
ZFS Administration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–2271
November 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S.
and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or
import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect,
are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not
limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document.
En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de
brevet en attente aux Etats-Unis et dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato
Systems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine en matière de contrôle des
exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs
finaux, pour des armes nucléaires, des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes
d’exclusion d’exportation américaines, y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer,
d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la legislation américaine en matière de contrôle des
exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE
CONTREFACON.

051118@13215

Contents

Preface 9

1 Introduction 13

1.1 What is ZFS? 13

1.1.1 Pooled Storage 13

1.1.2 Transactional Semantics 14

1.1.3 Checksums and Self-Healing Data 14

1.1.4 Unparalleled Scalability 15

1.1.5 Snapshots and Clones 15

1.1.6 Simplified Administration 15

1.2 ZFS Terminology 16

1.3 ZFS Component Naming Conventions 17

2 Getting Started 19

2.1 Hardware and Software Requirements 19

2.2 Creating a Basic Filesystem 20

2.3 Creating a Storage Pool 20

� Identifying Storage Requirements 20

� Creating the Pool 21

2.4 Creating a Filesystem Hierarchy 22

� Determining Filesystem Hierarchy 22

� Creating Filesystems 23

3 Differences from Traditional Filesystems 25

3.1 ZFS Filesystem Granularity 25

3

3.2 Space Accounting 26

3.3 Out of Space Behavior 26

3.4 Mounting Filesystems 27

3.5 Volume Management 27

3.6 ACLs 27

4 Managing Storage Pools 29

4.1 Virtual Devices 29

4.1.1 Disks 29

4.1.2 Files 30

4.1.3 Mirrors 31

4.1.4 RAID-Z 31

4.2 Self Healing Data 31

4.3 Dynamic Striping 32

4.4 Creating and Destroying Pools 32

4.4.1 Creating a Pool 32

4.4.2 Handling Pool Creation Errors 33

4.4.3 Destroying Pools 36

4.5 Device Management 37

4.5.1 Adding Devices to a Pool 37

4.5.2 Onlining and Offlining Devices 38

4.5.3 Replacing Devices 39

4.6 Querying Pool Status 39

4.6.1 Basic Pool Information 39

4.6.2 I/O Statistics 41

4.6.3 Health Status 43

4.7 Storage Pool Migration 45

4.7.1 Preparing for Migration 46

4.7.2 Exporting a Pool 46

4.7.3 Determining Available Pools to Import 47

4.7.4 Finding Pools From Alternate Directories 49

4.7.5 Importing Pools 49

5 Managing Filesystems 51

5.1 Creating and Destroying Filesystems 52

5.1.1 Creating a Filesystem 52

5.1.2 Destroying a Filesystem 52

4 ZFS Administration Guide • November 2005

5.1.3 Renaming a Filesystem 53
5.2 ZFS Properties 54

5.2.1 Read-Only Properties 57
5.2.2 Settable Properties 58

5.3 Querying Filesystem Information 60
5.3.1 Listing Basic Information 60
5.3.2 Complex Queries 61

5.4 Managing Properties 63
5.4.1 Setting Properties 63
5.4.2 Inheriting Properties 63
5.4.3 Querying Properties 64
5.4.4 Querying Properties for Scripting 66

5.5 Mounting and Sharing File Systems 66
5.5.1 Managing Mount Points 66
5.5.2 Mounting File Systems 68
5.5.3 Temporary Mount Properties 69
5.5.4 Unmounting File Systems 70
5.5.5 Sharing ZFS File Systems 70

5.6 Quotas and Reservations 72
5.6.1 Setting Quotas 72
5.6.2 Setting Reservations 73

5.7 Backing Up and Restoring ZFS Data 74
5.7.1 Backing Up ZFS Filesystems With Other Backup Products 75
5.7.2 Backing Up a ZFS Snapshot 75
5.7.3 Restoring a ZFS Snapshot 76
5.7.4 Remote Replication of a ZFS File System 76

6 ZFS Snapshots and Clones 77
6.1 ZFS Snapshots 77

6.1.1 Creating and Destroying ZFS Snapshots 78
6.1.2 Displaying and Accessing ZFS Snapshots 79
6.1.3 Rolling Back to a Snapshot 79

6.2 ZFS Clones 80
6.2.1 Creating a Clone 80
6.2.2 Destroying a Clone 81

7 Using ACLs to Protect ZFS Files 83
7.1 New Solaris ACL Model 83

5

7.1.1 ACL Format Description 84

7.1.2 ACL Inheritance 87

7.1.3 ACL Property Modes 88

7.2 Using ACLs on ZFS Files 89

7.3 Setting and Displaying ACLs on ZFS Files 91

7.3.1 Setting ACL Inheritance on ZFS Files 96

8 Advanced Topics 103

8.1 Emulated Volumes 103

8.1.1 Emulated Volumes as Swap or Dump Devices 104

8.2 Using ZFS on a Solaris System With Zones Installed 104

8.2.1 Adding File Systems to a Non-Global Zone 104

8.2.2 Delegating Datasets to a Non-Global Zone 105

8.2.3 Adding ZFS Volumes to a Non-Global Zone 106

8.2.4 Using ZFS Storage Pools Within a Zone 106

8.2.5 Property Management Within a Zone 106

8.2.6 Understanding the zoned Property 107

8.3 ZFS Alternate Root Pools 108

8.3.1 Creating ZFS Alternate Root Pools 109

8.3.2 Importing Alternate Root Pools 109

8.4 ZFS Rights Profiles 109

9 Troubleshooting and Data Recovery 111

9.1 ZFS Failure Modes 111

9.1.1 Missing Devices 112

9.1.2 Damaged Devices 112

9.1.3 Corrupted Data 112

9.2 Checking Data Integrity 113

9.2.1 Data Repair 113

9.2.2 Data Validation 113

9.2.3 Controlling Data Scrubbing 113

9.3 Identifying Problems 116

9.3.1 Determining if Problems Exist 116

9.3.2 Understanding zpool status Output 116

9.3.3 System Messaging 119

9.4 Damaged Configuration 119

9.5 Repairing a Missing Device 120

6 ZFS Administration Guide • November 2005

9.5.1 Physically Reattaching the Device 120

9.5.2 Notifying ZFS of Device Availability 120

9.6 Repairing a Damaged Device 121

9.6.1 Determining Type of Failure 121

9.6.2 Clearing Transient Errors 122

9.6.3 Replacing a Device 122

9.7 Repairing Damaged Data 126

9.7.1 Identifying Type of Data Corruption 126

9.7.2 Repairing a Corrupted File or Directory 128

9.7.3 Repairing Pool Wide Damage 128

9.8 Repairing an Unbootable System 129

7

8 ZFS Administration Guide • November 2005

Preface

The ZFS Administration Guide provides information about setting up and managing
ZFS file systems.

This guide contains information for both SPARC® based and x86 based systems.

Who Should Use This Book
This guide is intended for anyone who is interested in setting up and managing ZFS
file systems. Experience using Solaris or another UNIX version is recommended.

How This Book Is Organized
The following table describes the chapters in this book.

Chapter Description

Chapter 1 An overview of ZFS and its features and benefits. It also
covers some basic concepts and terminology.

Chapter 2 Step-by-step instructions for setting up simple ZFS
configurations with simple pools and filesystems. It also
provides the hardware and software required to create ZFS
filesystems.

9

Chapter Description

Chapter 3 Identifies important topics that make ZFS significantly
different from traditional filesystems. Understanding these
key differences will help reduce confusion when using
traditional tools to interact with ZFS.

Chapter 4 Detailed description of how to create and administer storage
pools.

Chapter 5 Detailed information about managing ZFS filesystems.
Included are such concepts as hierarchical filesystem layout,
property inheritance, and automatic mount point
management and share interactions.

Chapter 6 Detailed description of how to create and administer ZFS
snapshots and clones.

Chapter 7 Information about using access control lists (ACLs) to
protect your ZFS files by providing more granular
permissions then the standard UNIX permissions.

Chapter 8 Description of emulated volumes, using ZFS on a Solaris
system with zones installed, and alternate root pools.

Chapter 9 Describes how to identify ZFS failure modes and how to
recover from them. Steps for preventing failures are covered
as well.

Related Books
Related information about general Solaris system administration topics can be found
in the following books:

� Solaris System Administration: Basic Administration
� Solaris System Administration: Advanced Administration
� Solaris System Administration: Devices and File Systems
� Solaris System Administration: Security Services
� Solaris Volume Manager Administration Guide

10 ZFS Administration Guide • November 2005

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

11

http://docs.sun.com
http://docs.sun.com

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

12 ZFS Administration Guide • November 2005

CHAPTER 1

Introduction

This chapter provides an overview of ZFS and its features and benefits. It also covers
some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter.

� “1.1 What is ZFS?” on page 13
� “1.2 ZFS Terminology” on page 16
� “1.3 ZFS Component Naming Conventions” on page 17

1.1 What is ZFS?
The Zettabyte File System (ZFS) is a revolutionary new filesystem that fundamentally
changes the way filesystems are administered, with features and benefits not found in
any other filesystem available today. ZFS has been designed from the ground up to be
robust, scalable, and simple to administer.

1.1.1 Pooled Storage
ZFS uses the concept of Storage Pools to manage physical storage. Historically,
filesystems were constructed on top of a single physical device. In order to address
multiple devices and provide for data redundancy, the concept of a Volume Manager
was introduced to provide the image of a single device so that filesystems would not
have to be modified to take advantage of multiple devices. This added another layer
of complexity, and ultimately prevented certain filesystem advances, since the
filesystem had no control over the physical placement of data on the virtualized
volumes.

13

ZFS does away with the volume manager altogether. Instead of forcing the
administrator to create virtualized volumes, ZFS aggregates devices into a storage
pool. The storage pool describes the physical characteristics of the storage (device
layout, data redundancy, etc.) and acts as an arbitrary data store from which
filesystems can be created. Filesystems are no longer constrained to individual
devices, allowing them to share space with all filesystems in the pool. There is no need
to predetermine the size of a filesystem, as they grow automatically within the space
allocated to the storage pool. When new storage is added, all filesystems within the
pool can immediately make use of the additional space without additional work. In
many ways, the storage pool acts as a virtual memory system. When a memory DIMM
is added to a system, the operating system doesn’t force the administrator to invoke
some commands to configure the memory and assign it to individual processes — all
processes on the system automatically make use of the additional memory.

1.1.2 Transactional Semantics
ZFS is a transactional filesystem, which means that the filesystem state is always
consistent on disk. Traditional filesystems overwrite data in place, which means that if
the machine loses power between, say, the time a data block is allocated and when it is
linked into a directory, the filesystem will be left in an inconsistent state. Historically,
this was solved through the use of the fsck(1M) command, which was responsible
for going through and verifying filesystem state, making an attempt to repair it in the
process. This caused great pain to administrators, and was never guaranteed to fix all
possible problems. More recently, filesystems have introduced the idea of journaling,
which records action in a separate journal which can then be replayed safely in event
of a crash. This introduces unnecessary overhead (the data needs to be written twice)
and often results in a new set of problems (such as when the journal can’t be replayed
properly).

With a transactional filesystem, data is managed using copy on write semantics. Data is
never overwritten, and any sequence of operations is either entirely committed or
entirely ignored. This means that the filesystem can never be corrupted through
accidental loss of power or a system crash, and there is no need for a fsck(1M)
equivalent. While the most recently written pieces of data may be lost, the filesystem
itself will always be consistent. In addition, synchronous data (written using the
O_DSYNC flag) is always guaranteed to be written before returning, so it is never lost.

1.1.3 Checksums and Self-Healing Data
With ZFS, all data and metadata is checksummed using a user-selectable algorithm.
Those traditional filesystems that do provide checksumming have performed it on a
per-block basis, out of necessity due to the volume manager layer and traditional
filesystem design. This means that certain failure modes (such as writing a complete
block to an incorrect location) can result in properly checksummed data that is

14 ZFS Administration Guide • November 2005

actually incorrect. ZFS checksums are stored in a way such that these failure modes
are detected and can be recovered from gracefully. All checksumming and data
recovery is done at the filesystem layer, and is transparent to the application.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with
varying levels of data redundancy, including mirroring and a variation on RAID-5.
When a bad data block is detected, not only does ZFS fetch the correct data from
another replicated copy, but it will also go and repair the bad data, replacing it with
the good copy.

1.1.4 Unparalleled Scalability
ZFS has been designed from the ground up to be the most scalable filesystem, ever.
The filesystem itself is a 128-bit filesystem, allowing for 256 quadrillion zettabytes of
storage. All metadata is allocated dynamically, so there is no need to pre-allocate
inodes or otherwise limit the scalability of the filesystem when it is first created. All
the algorithms have been written with scalability in mind. Directories can have up to
248 (256 trillion) entries, and there is no limit on the number of filesystems or number
of files within a filesystem.

1.1.5 Snapshots and Clones
A snapshot is a read-only copy of a filesystem or volume. Snapshots can be created
quickly and easily. Initially, snapshots consume no additional space within the pool.

As data within the active dataset changes, the snapshot consumes space by continuing
to reference the old data, and so, prevents it from being freed back to the pool.

1.1.6 Simplified Administration
Most importantly, ZFS provides a greatly simplified administration model. Through
the use of hierarchical filesystem layout, property inheritance, and auto-management
of mount points and NFS share semantics, ZFS makes it easy to create and manage
filesystems without needing multiple different commands or editing configuration
files. The administrator can easily set quotas or reservations, turn compression on or
off, or manage mount points for large numbers of filesystems with a single command.
Devices can be examined or repaired without having to understand a separate set of
volume manager commands. Administrators can take an unlimited number of
instantaneous snapshots of filesystems, and can backup and restore individual
filesystems.

ZFS manages filesystems through a hierarchy that allows for this simplified
management of properties such as quotas, reservations, compression, and mount
points. In this model, filesystems become the central point of control. Filesystems

Chapter 1 • Introduction 15

themselves are very cheap (equivalent to a new directory), so administrators are
encouraged to create a filesystem for each user, project, workspace, etc. This allows the
administrator to define arbitrarily fine-grained management points.

1.2 ZFS Terminology
The following table covers the basic terminology used throughout this book.

checksum A 256-bit hash of the data in a filesystem block. The checksum
function can be anything from the simple and fast fletcher2 (the
default) to cryptographically strong hashes such as SHA256.

clone A filesystem whose initial contents are identical to that of a
snapshot.

For information about clones, see “6.2 ZFS Clones” on page 80.

dataset A generic name for ZFS entities: clones, filesystems, snapshots, or
volumes.

For more information about datasets, see Chapter 5.

filesystem A dataset that contains a standard POSIX filesystem.

For more information about filesystems, see Chapter 5.

mirror A virtual device that stores identical copies of data on two or more
disks. If any disk in a mirror fails, any one of the other disks in that
mirror can provide the same data.

pool A logical group of devices describing the layout and physical
characteristics of available storage. Space for datasets is allocated
from a pool.

For more information about storage pools, see Chapter 4.

RAID-Z A virtual device that stores data and parity on multiple disks,
similar to RAID-5. All traditional RAID-5-like algorithms (RAID-4.
RAID-5. RAID-6, RDP, and EVEN-ODD, for example) suffer from a
problem known as the “RAID-5 write hole”: if only part of a RAID-5
stripe is written, and power is lost before all blocks have made it to
disk, the parity will remain out of sync with data – and therefore
useless – forever (unless a subsequent full-stripe write overwrites it).
In RAID-Z, ZFS uses variable-width RAID stripes so that all writes
are full-stripe writes. This is only possible because ZFS integrates
filesystem and device management in such a way that the

16 ZFS Administration Guide • November 2005

filesystem’s metadata has enough information about the underlying
data replication model to handle variable-width RAID stripes.
RAID-Z is the world’s first software-only solution to the RAID-5
write hole.

snapshot A read-only image of a filesystem or volume at a given point in
time.

For more information about snapshots, see “6.1 ZFS Snapshots”
on page 77.

virtual device A logical device in a pool, which can be a physical device, a file, or a
collection of devices.

For more information on virtual devices, see “4.1 Virtual Devices”
on page 29.

volume A dataset used to emulate a physical device in order to support
legacy filesystems.

For more information on emulated volumes, see “8.1 Emulated
Volumes” on page 103.

Each dataset is identified by a unique name of the ZFS namespace. Datasets are
identified using the following format:

pool/path[@snapshot]

pool identifies the name of the storage pool that contains the dataset

path is a slash-delimited pathname for the dataset object

snapshot is an optional component that identifies a snapshot of a dataset

1.3 ZFS Component Naming
Conventions
Each ZFS component must be named according to the following rules:

� Empty components are not allowed.

� Each component can only be composed of alphanumeric characters plus the
following special characters: _, -, :, and .

� Pool names must begin with a letter, except that the beginning sequence c[0–9] is
not allowed. The pool names ’raidz’ and ’mirror’ are reserved names.

� Dataset names must begin with an alphanumeric character.

Chapter 1 • Introduction 17

18 ZFS Administration Guide • November 2005

CHAPTER 2

Getting Started

This chapter provides step-by-step instructions for setting up simple ZFS
configurations. By the end of this chapter, you should have a basic idea of how the
ZFS commands work, and should be able to create simple pools and filesystems. It is
not designed to be a comprehensive overview, and refers to later chapters for more
detailed information.

The following sections are provided in this chapter.

� “2.1 Hardware and Software Requirements” on page 19
� “2.2 Creating a Basic Filesystem” on page 20
� “2.3 Creating a Storage Pool” on page 20
� “2.4 Creating a Filesystem Hierarchy” on page 22

2.1 Hardware and Software
Requirements
Make sure the following hardware and software requirements are met before
attempting to use the ZFS software.

� A SPARC or x86 system that is running the Solaris Nevada release, build 27.

� The minimum disk size is 128 Mbytes. The minimum amount of disk space
required for a storage pool is 64 Mbytes.

� A minimum of 128 Mbytes of memory.

If you create a mirrored disk configuration, multiple controllers are recommended.

19

2.2 Creating a Basic Filesystem
ZFS administration has been designed with simplicity in mind. Among the goals of
the commands is to reduce the number of commands needed to create a usable
filesystem. Assuming that the whole disk /dev/dsk/c0t0d0 is available for use, the
following sequence of commands will create a filesystem for you to use:

zpool create tank c0t0d0
zfs create tank/fs

This creates a new storage pool with the name tank, and a single filesystem in that
pool with the name fs. This new filesystem can use as much of the disk space on
c0t0d0 as needed, and is automatically mounted at /tank/fs:

mkfile 100m /tank/fs/foo
df -h /tank/fs
Filesystem size used avail capacity Mounted on
tank/fs 80G 100M 80G 1% /tank/fs

2.3 Creating a Storage Pool
While the previous example serves to illustrate the simplicity of ZFS, it is not a terribly
useful example. In the remainder of this chapter, we will demonstrate a more complete
example similar to what we would encounter in a real world environment. The first
step is to create a storage pool. The pool describes the physical characteristics of the
storage and must be created before any filesystems.

� Identifying Storage Requirements

1. Determine available devices.

Before creating a storage pool, you must determine which devices will store your
data. These must be disks of at least 128 Mbytes in size, and must not be in use by
other parts of the operating system. The devices can be individual slices on a
pre-formatted disk, or they can be entire disks which ZFS will format to be a single
large slice. For this example, we will assume that the whole disks
/dev/dsk/c0t0d0 and /dev/dsk/c0t0d1 are available for use.

For more information on devices and how they are used and labelled, see “4.1.1
Disks” on page 29.

Steps

20 ZFS Administration Guide • November 2005

2. Choose data replication.

ZFS supports multiple types of data replication, which determines what types of
hardware failures the pool is able to withstand. ZFS supports non-redundant
(striped) configurations, as well mirroring and RAID-Z (a variation on RAID-5).
For this example, we will use basic mirroring between the two available disks.

� Creating the Pool

1. Become root or assume an equivalent role with the appropriate ZFS rights
profile.

For more information about the ZFS rights profiles, see “8.4 ZFS Rights Profiles”
on page 109.

2. Pick a pool name.

The name is used to identify this storage pool when using any of the zpool(1M)
or zfs(1M) commands. Most systems will require only a single pool, so you can
pick any name that your prefer, provided it satisfies the naming requirements
outlined in “1.3 ZFS Component Naming Conventions” on page 17. For this
example, we will use the pool name tank.

3. Create the pool.

Execute the following command to create the pool:

zpool create tank mirror c0t0d0 c0t0d1

If one or more of the devices contains another filesystem or is otherwise in use, the
command will refuse to create the pool.

For more information on creating storage pools, see “4.4.1 Creating a Pool”
on page 32.

For more information on how devices usage is determined, see “4.4.2.1 Detecting
In-Use Devices” on page 33.

4. Viewing the result.

You can see that your pool was successfully created by using the zpool list
command:

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80G 137K 80G 0% ONLINE -

For more information on getting pool status, see “4.6 Querying Pool Status”
on page 39.

Steps

Chapter 2 • Getting Started 21

2.4 Creating a Filesystem Hierarchy
Now that you have created a storage pool to hold your data, you can create your
filesystem hierarchy. Name hierarchies are a simple yet powerful mechanism for
organizing information. They are also very familiar to anyone who has used a
filesystem.

ZFS allows filesystems to be organized into arbitrary hierarchies, where each
filesystem has only a single parent. The root of the name hierarchy is always the pool
name. ZFS leverages this hierarchy by supporting property inheritance, so that
common properties can be set quickly and easily on entire trees of filesystems.

� Determining Filesystem Hierarchy

1. Pick filesystem granularity.

ZFS filesystems are the central point of administration. They are lightweight, and
can be created easily. A good model to use is a filesystem per user or project, as this
allows properties, snapshots, and backups to be controlled on a per-user or
per-project basis. For this example, we will be creating a filesystem for each of two
users: bonwick and billm

For more information on managing filesystems, see Chapter 5.

2. Group similar filesystems together.

ZFS allows filesystems to be organized into hierarchies so that similar filesystems
can be grouped together. This provides a central point of administration for
controlling properties and administering filesystems. Similar filesystems should be
created under a common name. For this example, we will place our two filesystems
under a filesystem named home.

3. Choosing filesystem properties.

Most filesystem characteristics are controlled using simple properties. These
properties control a variety of behavior, including where the filesystems are
mounted, how they are shared, whether they use compression, and if there are any
quotas in effect. For this example, we want all home directories to be mounted at
/export/home/user, shared via NFS, and with compression. In addition, we will
enforce a quota of 10 Gbytes on bonwick.

For more information on properties, see “5.2 ZFS Properties” on page 54.

Steps

22 ZFS Administration Guide • November 2005

� Creating Filesystems

1. Become root or assume an equivalent role with the appropriate ZFS rights
profile.
For more information about the ZFS rights profiles, see “8.4 ZFS Rights Profiles”
on page 109.

2. Create desired hierarchy.
In this example, we create a filesystem that will act as a container for individual file
systems:

zfs create tank/home

Now we can group our individual filesystems under the home file system in our
pool tank

3. Set inherited properties.
Now that we have established a filesystem hierarchy, we want to set up any
properties that should be shared among all users:

zfs set mountpoint=/export/zfs tank/home
zfs set sharenfs=on tank/home
zfs set compression=on tank/home

For more information on properties and property inheritance, see “5.2 ZFS
Properties” on page 54.

4. Create individual filesystems.
Now we can create our individual user filesystems. Note that we could have also
created the filesystems first and then changed properties at the home level. All
properties can be changed dynamically while filesystems are in use.

zfs create tank/home/bonwick
zfs create tank/home/billm

These filesystems inherit their property settings from their parent, so they be
automatically mounted at /export/zfs/user and shared via NFS. There is no
need to edit the /etc/vfstab or /etc/dfs/dfstab file.

For more information on creating filesystems, see “5.1.1 Creating a Filesystem”
on page 52.

For more information on mounting and sharing filesystems, see “5.5 Mounting and
Sharing File Systems” on page 66.

5. Set filesystem-specific properties.
As mentioned in the previous task, we want to give bonwick a quota of 10 Gbytes.
This places a limit on the amount of space he can consume, regardless of how
much space is available in the pool:

zfs set quota=10G tank/home/bonwick

Steps

Chapter 2 • Getting Started 23

6. View the results.

Display available filesystem information with the zfs list command:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 92.0K 67.0G 9.5K /tank
tank/home 24.0K 67.0G 8K /export/zfs
tank/home/billm 8K 67.0G 8K /export/zfs/billm
tank/home/bonwick 8K 10.0G 8K /export/zfs/bonwick

Note that bonwick only has 10 Gbytes of space available, while billm can use the
full pool (67 Gbytes).

For more information on getting filesystem status, see “5.3 Querying Filesystem
Information” on page 60.

For more information on how space is used and calculated, see “3.2 Space
Accounting” on page 26.

24 ZFS Administration Guide • November 2005

CHAPTER 3

Differences from Traditional
Filesystems

Before continuing further with ZFS, there are some important topics that differ
significantly from traditional filesystems. Understanding these key differences will
help reduce confusion when using traditional tools to interact with ZFS.

The following sections are provided in this chapter.

� “3.1 ZFS Filesystem Granularity” on page 25
� “3.2 Space Accounting” on page 26
� “3.3 Out of Space Behavior” on page 26
� “3.4 Mounting Filesystems” on page 27
� “3.5 Volume Management” on page 27
� “3.6 ACLs” on page 27

3.1 ZFS Filesystem Granularity
Historically, filesystems were constrained to one device so that the filesystems
themselves were constrained to the size of the device. Creating and recreating
traditional filesystems because of size constraints are time-consuming and sometimes
difficult. Traditional volume management products helped manage this process.

Because ZFS filesystems are not constrained to specific devices, they can be created
easily and quickly like directories. They grow automatically within the space allocated
to the storage pool.

Instead of creating one filesystem, such as /export/home, to manage many user
subdirectories, you can create one filesystem per user. In addition, ZFS also provides a
filesystem hierarchy so that it is easy to set up and manage many filesystems by
applying properties that can be inherited by filesystems contained within the
hierarchy.

25

For an example of creating a filesystem hierarchy, see “2.4 Creating a Filesystem
Hierarchy” on page 22.

3.2 Space Accounting
ZFS is based on a concept of pooled storage. Unlike typical file systems, which are
mapped to physical storage, all ZFS file systems in a pool share the available storage
in the pool. So the available space reported by utilities like df may change even when
the file systems is inactive, as other file systems in the pool consume or release space.
Note that maximum file system size can be limited using quotas (see “5.6.1 Setting
Quotas” on page 72), and space can be guaranteed to a file system using reservations
(see “5.6.2 Setting Reservations” on page 73). The user experience of this model is
very similar to the NFS experience when multiple directories are mounted from the
same file systems (consider /home).

All metadata in ZFS is allocated dynamically. Most other file systems pre-allocate
much of their metadata. As a result, there is an immediate space cost at file system
creation for this metadata. This also means that the total number of files supported by
the file systems is predetermined. Since ZFS allocates its metadata as it needs it, there
is no initial space cost, and the number of files is limited only by the available space.
The output from the df -g command must be interpreted differently for ZFS than
other file systems: the total files reported is only an estimate based on the
amount of storage available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into
transaction groups and committed to disk asynchronously. Until they are committed
to disk, they are termed pending changes. The amount of space used, available, and
referenced by a file or filesystem does not take into account pending changes. Pending
changes are generally accounted for within a few seconds. Even committing a change
to disk using fsync(3c) or O_SYNC does not necessarily guarantee that the space
usage information will be updated immediately.

3.3 Out of Space Behavior
File system snapshots (see Chapter 6) are “cheap and easy” to make in ZFS. It is
anticipated that they will be common in most ZFS environments. The presence of
snapshots can cause some unexpected behavior when attempting to free up space. It is
generally expected that, given appropriate permissions, one can always remove a file
from a full file system, and that this action results in more space becoming available in

26 ZFS Administration Guide • November 2005

the file system. However, if the file to be removed exists in a snapshot of the file
system, then there is no space gained from the file deletion. The blocks making up the
file continue to be referenced from the snapshot. In fact, the file deletion can end up
consuming more disk space, since a new version of the directory will need to be
created to reflect the new state of the namespace. This means that one can get an
unexpected ENOSPC or EDQUOT when attempting to remove a file.

3.4 Mounting Filesystems
ZFS is designed to reduce complexity and ease administration. For example, in
existing systems it is necessary to edit /etc/vfstab every time a new filesystem is
added. ZFS has eliminated this need by automatically mounting and unmounting
filesystems according to properties of the dataset. There is no need to add ZFS entries
to the /etc/vfstab file.

For more information on mounting and sharing filesystems, see “5.5 Mounting and
Sharing File Systems” on page 66.

3.5 Volume Management
As described in “1.1.1 Pooled Storage” on page 13, ZFS eliminates the need for a
separate volume manager. ZFS operates on raw devices, however, so it’s possible to
create a storage pool comprised of logical volumes (either software or hardware). This
is not a recommended configuration, as ZFS works best when using raw physical
devices. Using a logical volumes may sacrifice performance and/or reliability, and
should be avoided.

3.6 ACLs
Previous versions of Solaris supported an ACL implementation that was primarily
based on the POSIX ACL draft specification. The POSIX-draft based ACLs are used to
protect UFS files. A new ACL model that is based on the NFSv4 specification is used to
protect ZFS files.

The main differences of the new ACL model are as follows:

Chapter 3 • Differences from Traditional Filesystems 27

� Based on the NFSv4 specification and are similar to NT-style ACLs.

� Much more granular set of access privileges.

� Set and displayed with the chmod and ls commands rather than the setfacl and
getfacl commands.

� Richer inheritance semantics for designating how access privileges are applied
from directory to subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 7.

28 ZFS Administration Guide • November 2005

CHAPTER 4

Managing Storage Pools

This chapter contains a detailed description of how to create and administer storage
pools.

The following sections are provided in this chapter.

� “4.1 Virtual Devices” on page 29
� “4.4 Creating and Destroying Pools” on page 32
� “4.5 Device Management” on page 37
� “4.6 Querying Pool Status” on page 39
� “4.7 Storage Pool Migration” on page 45

4.1 Virtual Devices
Before getting into detail about how exactly pools are created and managed, you must
first understand some basic concepts about virtual devices. Each storage pool is
comprised of one or more virtual devices, which describe the layout of physical
storage and its fault characteristics.

4.1.1 Disks
The most basic building block for a storage pool is a piece of physical storage. This can
be any block device of at least 128 Mbytes in size. Typically, this is some sort of hard
drive visible to the system in the /dev/dsk directory. A storage device can be a whole
disk (c0t0d0) or an individual slice (c0t0d0s7). The recommended mode of
operation is to use an entire disk, in which case the disk does not need to be specially
formatted. ZFS formats the disk using an EFI label to contain a single, large slice.
When used in this fashion, the partition table (as displayed by format(1M)) looks
similar to the following:

29

Current partition table (original):
Total disk sectors available: 71670953 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector
0 usr wm 34 34.18GB 71670953
1 unassigned wm 0 0 0
2 unassigned wm 0 0 0
3 unassigned wm 0 0 0
4 unassigned wm 0 0 0
5 unassigned wm 0 0 0
6 unassigned wm 0 0 0
7 unassigned wm 0 0 0
8 reserved wm 71670954 8.00MB 71687337

In order to use whole disks, the disks must be named in a standard Solaris fashion
(/dev/dsk/cXtXdXsX). Some third party drivers use a different naming scheme or
place disks in a location other than /dev/dsk. In order to use these disks, you must
manually label the disk and provide a slice to ZFS. Disks can be labelled with EFI
labels or a traditional Solaris VTOC label. Slices should only be used when the device
name is non-standard, or when there a single disk must be shared between ZFS and
UFS or swap or a dump device. Disks can be specified using either the full path (such
as /dev/dsk/c0t0d0) or a shorthand name consisting of the filename within
/dev/dsk (such as c0t0d0). For example, the following are all valid disk names:

� c1t0d0
� /dev/dsk/c1t0d0
� c0t0d6s2
� /dev/foo/disk

ZFS works best when given whole physical disks. You should refrain from
constructing logical devices using a volume manager (SVM or VxVM) or hardware
volume manager (LUNs or hardware RAID). While ZFS functions properly on such
devices, it may result in less-than-optimal performance.

Disks are identified both by their path and their device ID (if available). This allows
devices to be reconfigured on a system without having to update any ZFS state. If a
disk is switched between controller 1 and controller 2, ZFS uses the device ID to detect
that the disk has moved and should now be accessed using controller 2. The device ID
is unique to the drive’s firmware. While unlikely, some firmware updates have been
known to change device IDs. If this happens, ZFS will still be able to access the device
by path (and will update the stored device ID automatically). If you manage to change
both the path and ID of the device, then you will have to export and re-import the
pool in order to use it.

4.1.2 Files
ZFS also allows for ordinary files within a pool. This is aimed primarily at testing and
enabling simple experimentation. It is not designed for production use. The reason is
that any use of files relies on the underlying filesystem for consistency. If you create
a ZFS pool backed by files on a UFS filesystem, then you are implicitly relying on UFS
to guarantee correctness and synchronous semantics.

30 ZFS Administration Guide • November 2005

However, files can be quite useful when first trying out ZFS or experimenting with
more complicated layouts when not enough physical devices are present. All files
must be specified as complete paths, and must be at least 128 megabytes in size. If a
file is moved or renamed the pool must be exported and re-imported in order to use it,
as there is no device ID associated with files by which they can be located.

4.1.3 Mirrors
ZFS provides two levels of data redundancy: mirroring and RAID-Z.

A mirrored storage pool configuration requires at least two disks, preferrably on
separate controllers.

4.1.4 RAID-Z
In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z
configuration.

RAID-Z is similar to RAID-5 except that it does full-stripe writes, so there’s no write
hole as described in the RAID-Z description in “1.2 ZFS Terminology” on page 16.

You need at least two disks for a RAID-Z configuration. Other than that, no special
hardware is required to create a RAID-Z configuration.

Currently, RAID-Z provides single parity. If you have 3 disks in a RAID-Z
configuration, 1 disk is used for parity.

4.2 Self Healing Data
ZFS provides for self-healing data. ZFS supports storage pools with varying levels of
data redundancy, as described above.

When a bad data block is detected, not only does ZFS fetch the correct data from
another replicated copy, but it will also go and repair the bad data, replacing it with
the good copy.

Chapter 4 • Managing Storage Pools 31

4.3 Dynamic Striping
For each virtual device added to the pool, ZFS dynamically stripes data across all
available devices. The decision where to place data is done at write time, so there is no
need to create fixed width stripes at allocation time. Virtual devices can be added to a
pool and ZFS gradually allocates data to the new device in order to maintain
performance and space allocation policies.

As a result, storage pools can contain multiple “top level” virtual devices. Each virtual
device can also be a mirror or a RAID-Z device containing other disk or file devices.
This flexibility allows for complete control over the fault characteristics of your pool.
Given 4 disks, for example, you could create the following configurations:

� Four disks using dynamic striping
� One four-way RAID-Z configuration
� Two two-way mirrors using dynamic striping

While ZFS supports combining different types of virtual devices within the same pool,
it is not a recommended practice. For example, you can create a pool with a two-way
mirror and a 3-way RAID-Z configuration, but your fault tolerance is as good as your
worst virtual device (RAID-Z in this case). The recommended practice is to use top
level virtual devices all of the same type with the same replication level in each.

4.4 Creating and Destroying Pools
By design, creating and destroying pools is fast and easy. But beware, although checks
are performed to prevent using devices known to be in-use in a new pool, it is not
always possible to know a device is already in use. Destroying a pool is even easier. It
is a simple command with significant consequences. Use it with caution.

4.4.1 Creating a Pool
To create a storage pool, use the zpool create command. The command takes a
pool name and any number of virtual devices. The pool name must satisfy the naming
conventions outlined in “1.3 ZFS Component Naming Conventions” on page 17.

4.4.1.1 Basic Pool
The following command creates a new pool named tank consisting of the disks
c0t0d0 and c1t0d0:

32 ZFS Administration Guide • November 2005

zpool create tank c0t0d0 c1t0d0

As described in the previous section, these whole disks are found under the
/dev/dsk directory and labelled appropriately to contain a single, large slice. Data is
dynamically striped across both disks.

4.4.1.2 Mirrored Pool
To create a mirrored pool, use the mirror keyword, followed by any number of
storage devices comprising the mirror. Multiple mirrors can be specified by repeating
the mirror keyword on the command line. The following command creates a pool
with two, two-way mirrors:

zpool create tank mirror c0d0 c1d0 mirror c0d1 c1d1

The second mirror keyword indicates that a new top-level virtual device is being
specified. Data is dynamically striped across both mirrors, with data being replicated
between each disk appropriately.

4.4.1.3 RAID-Z Pool
Creating a RAID-Z pool is identical to a mirrored pool, except that the raidz
keyword is used instead of mirror. The following command creates a pool with a
single RAID-Z device consisting of 5 disk slices:

zpool create tank raidz c0t0d0s0 c0t0d1s0 c0t0d2s0 c0t0d3s0
/dev/dsk/c0t0d4s0

In the above example, the disk must have been pre-formatted to have an appropriately
sized slice zero. The above command also demonstrates that disks can be specified
using their full path. /dev/dsk/c0t0d4s0 is identical to c0t0d4s0 by itself.

Note that there is no requirement to use disk slices in a RAID-Z configuration. The
above command is just an example of using disk slices in a storage pool.

4.4.2 Handling Pool Creation Errors
There are a number of reasons that a pool cannot be created. Some of these are
obvious, such as when a specified device doesn’t exist, while others are more subtle.

4.4.2.1 Detecting In-Use Devices
Before formatting a device, ZFS first checks to see if it is in use by ZFS or some other
part of the operating system. If this is the case, you may see errors such as:

zpool create tank c0t0d0 c1t0d0
invalid vdev specification
use ’-f’ to override the following errors:

Chapter 4 • Managing Storage Pools 33

/dev/dsk/c0t0d0s0 is currently mounted on /
/dev/dsk/c0t0d0s1 is currently mounted on swap
/dev/dsk/c1t1d0s0 is part of active pool ’tank’

Some of these errors can be overridden by using the -f flag, but most cannot. The
following uses cannot be overridden using -f, and must be manually corrected by the
administrator:

Mounted filesystem The disk or one of its slices contains a filesystem that is
currently mounted. To correct this error, use the
umount(1M) command.

Filesystem in /etc/vfstab The disk contains a filesystem that is listed in
/etc/vfstab, but is not currently mounted. To correct
this error, remove or comment out the line in the
/etc/vfstab file.

Dedicated dump device The disk is in use as the dedicated dump device for the
system. To correct this error, use the dumpadm(1M)
command.

Part of ZFS pool The disk or file is part of an active ZFS storage pool. To
correct this error, use the zpool(1M) command to destroy
the pool.

The following in-use checks serve as helpful warnings, and can be overridden using
the -f flag to create:

Contains a filesystem The disk contains a known filesystem, though it is not
mounted and doesn’t appear to be in use.

Part of volume The disk is part of a SVM or VxVM volume.

Live upgrade The disk is in use as an alternate boot environment for
live upgrade.

Part of exported ZFS pool The disk is part of a storage pool that has been exported
or manually removed from a system. In the latter case,
the pool is reported as potentially active, as the
disk may or may not be a network-attached drive in use
by another system. Care should be taken when
overriding a potentially active pool.

The following example demonstrates how the -f flag is used:

zpool create tank c0t0d0
invalid vdev specification
use ’-f’ to override the following errors:
/dev/dsk/c0t0d0s0 contains a ufs filesystem
zpool create -f tank c0t0d0

It is recommended that you correct the errors rather than using the -f flag.

34 ZFS Administration Guide • November 2005

4.4.2.2 Mismatched Replication Levels
Creating pools with virtual devices of different replication levels is not recommended.
The zpool(1M) command tries to prevent you from accidentally creating a pool with
mismatched replication levels. If you try to create a pool with such a configuration,
you will see errors similar to the following:

zpool create tank c0t0d0 mirror c0t0d1 c0t0d2
invalid vdev specification: mirror requires at least 2 devices
zpool create tank mirror c0t0d0 c0t0d1 mirror c1t0d0 c1t0d1 c1t0d2
use ’-f’ to override the following errors:
mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

These errors can be overridden with the -f flag, though doing so is not recommended.
The command also warns about creating a mirrored or RAID-Z pool using devices of
different sizes. While this is allowed, it results in unused space on the larger device,
and requires the -f flag to override the warning.

4.4.2.3 Doing a Dry Run
Because there are so many ways that creation can fail unexpectedly, and because
formatting disks is such a potentially harmful action, the zfs create command has
an additional option, -n, which simulates creating the pool without actually writing
data to disk. This option does the device in-use checking and replication level
validation, and reports any errors in the process. If no errors are found, you see output
similar to the following

zpool create -n tank mirror c1t0d0 c1t1d1
would create ’tank’ with the following layout:

tank
mirror
c1t0d0
c1t1d0

There are some errors that cannot be detected without actually creating the pool. The
most common example is specifying the same device twice in the same configuration.
This cannot be reliably detected without writing the data itself, so it is possible for
create -n to report success and yet fail to create the pool when run for real.

4.4.2.4 Default Mount Point for Pools
When a pool is created, the default mount point for the root dataset is /poolname by
default. This directory must either not exist (in which case it is automatically created)
or empty (in which case the root dataset is mounted on top of the existing directory).
To create a pool with a different default mount point, use zpool create’s -m option:

Chapter 4 • Managing Storage Pools 35

zpool create home c0t0d0
default mountpoint ’/home’ exists and is not empty
use ’-m’ option to specify a different default
zpool create -m /export/zfs home c0t0d0

This command creates a new pool home with the home dataset having a mount point
of /export/zfs.

For more information on mount points, see “5.5.1 Managing Mount Points” on page
66.

4.4.3 Destroying Pools
Pools are destroyed by using the zpool destroy command. This command destroys
the pool even if it contains mounted datasets.

zpool destroy tank

Caution – Currently, once a pool is destroyed, your data is gone. Be very careful when
you destroy a pool.

4.4.3.1 Destroying a Pool With Faulted Devices
The act of destroying a pool requires that data be written to disk to indicate that the
pool is no longer valid. This prevents the devices from showing up as a potential pool
when doing an import. If one or more devices is unavailable, the pool can still be
destroyed but the necessary state won’t be written to these damaged devices. This
means that these devices, when suitably repaired, are reported as ’potentially active’
when creating new pools, and appear as valid devices when searching for pools to
import. If a pool has enough faulted devices such that the pool itself is faulted (a
top-level virtual device is faulted), then the command prints a warning and refuses to
complete without the -f flag. This is because we cannot open the pool, so we don’t
know if there is any data stored or not. For example:

zpool destroy tank
cannot destroy ’tank’: pool is faulted
use ’-f’ to force destruction anyway
zpool destroy -f tank

For more information on pool and device health, see “4.6.3 Health Status” on page
43.

For more information on importing pools, see “4.7.5 Importing Pools” on page 49.

36 ZFS Administration Guide • November 2005

4.5 Device Management
Most of the basic information regarding devices is covered in “4.1 Virtual Devices”
on page 29. Once a pool has been created, there are a number of tasks to be done when
managing the physical devices within the pool.

4.5.1 Adding Devices to a Pool
Space can be dynamically added to a pool by adding a new top-level virtual device.
This space is immediately available to all datasets within the pool. To add a new
virtual device to a pool, use the zpool add command:

zpool add scoop mirror c0t1d0 c1t1d0

The format of the virtual devices is the same as for the zpool create command, and
the same rules apply. Devices are checked to see if they are in use, and the command
refuses to change the replication level unless the -f flag is given. The command also
supports the -n option to do a dry run:

zpool add -n scoop mirror c0t2d0 c1t2d0
would update ’scoop’ to the following configuration:

scoop
mirror

c0t0d0
c1t0d0

mirror
c0t1d0
c1t1d0

mirror
c0t2d0
c1t2d0

The above command syntax would add mirrored devices c0t2d0 and c1t2d0 to pool
scoop’s existing configuration.

For more information on how virtual device validation is done, see “4.4.2.1 Detecting
In-Use Devices” on page 33.

Chapter 4 • Managing Storage Pools 37

4.5.2 Onlining and Offlining Devices
ZFS allows individual devices to be taken offline or brought online. When hardware is
flaky or otherwise bad, ZFS will continue to read or write data to the device, assuming
the condition is only temporary. If this is not a temporary condition, it is possible to
tell ZFS to ignore the device by bringing it offline. ZFS will no longer send any
requests to an offlined device.

Devices do not need to be offlined in order to replace them.

Bringing a device offline is an informational hint to ZFS to avoid sending requests to
the device.

4.5.2.1 Taking a Device Offline
To take a device offline, use the zpool offline command. The device can be
specified by path, or short name (if it is a disk). For example:

zpool offline tank c0t0d0
bringing device ’c0t0d0’ offline

You cannot offline a pool to the point where it becomes faulted. For example, you
cannot offline two devices out of a RAID-Z configuration, nor can you offline a
top-level virtual device. Offlined devices show up in the OFFLINE state when
querying pool status. If you truly want to offline a device and cause your pool to
become faulted, you can do so using the -f flag. Note that doing so prevents any data
from being accessed, and may result in I/O errors and system panics.

zpool offline tank c0t0d0
cannot offline /dev/dsk/c1t2d0: no valid replicas

By default, the offline state is persistent; the device remains offline when the system is
rebooted.

For more information on device health, see “4.6.3 Health Status” on page 43.

4.5.2.2 Bringing a Device Online
Once a device is taken offline, it can be restored by using the zpool online
command:

zpool online tank c0t0d0
bringing device ’c0t0d0’ online

When a device is brought online, any data that has been written to the pool is
resynced to the newly available device. Note that you cannot use device onlining to
replace a disk. If you offline a device, replace the drive, and try to bring it online, it
remains in the faulted state.

38 ZFS Administration Guide • November 2005

For more information on replacing devices, see “9.6 Repairing a Damaged Device”
on page 121.

4.5.3 Replacing Devices
You can replace a device in a storage pool by using the zpool replace command.

zpool replace tank c0t0d0 c0t0d1

In the above example, the previous device, c0t0d0, is replaced by c0t0d1.

The replacement device must be either equal in size or larger than the previous device.
If the replacement device is larger, the pool size is increased when the replacement is
complete.

For more information about replacing devices, see “9.5 Repairing a Missing Device”
on page 120 and “9.6 Repairing a Damaged Device” on page 121.

4.6 Querying Pool Status
The zpool(1M) command provides a number of ways to get information regarding
pool status. The information available generally falls into three categories: basic usage
information, I/O statistics, and health status. These are covered in this section.

4.6.1 Basic Pool Information
The zpool list command is used to display basic information about pools.

4.6.1.1 Listing All Information
With no arguments, the command displays all the fields for all pools on the system:

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80.0G 22.3G 47.7G 28% ONLINE -
dozer 1.2T 384G 816G 32% ONLINE -

The field display the following information:

NAME The name of the pool.

Chapter 4 • Managing Storage Pools 39

SIZE The total size of the pool, equal to the sum of the size of all top
level virtual devices.

USED The amount of space allocated by all datasets and internal
metadata. Note that this is different from the amount of space as
reported at the filesystem level.

For more information on determining available filesystem
space, see “3.2 Space Accounting” on page 26.

AVAILABLE The amount of unallocated space in the pool.

CAPACITY (CAP) The amount of space used, expressed as a percentage of total
space.

HEALTH The current health status of the pool.

For more information on pool health, see “4.6.3 Health Status”
on page 43.

ALTROOT The alternate root of the pool, if any.

For more information on alternate root pools, see “8.3 ZFS
Alternate Root Pools” on page 108.

You can also gather statistics for an individual pool by specifying the pool name:

zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80.0G 22.3G 47.7G 28% ONLINE -

4.6.1.2 Listing Individual Statistics
Individual statistics can be specified using the -o option. This allows for custom
reports or a quick way to list pertinent information. For example, to list only the name
and size of each pool:

zpool list -o name,size
NAME SIZE
tank 80.0G
dozer 1.2T

The column names correspond to the properties listed in the previous section.

40 ZFS Administration Guide • November 2005

4.6.1.3 Scripting
The default output for the zpool list command is designed to be human-readable,
and is not easy to use as part of a shell script. In order to aid programmatic uses of the
command, the -H option can be used to suppress the column headings and separate
fields by tabs, rather than space padding. For example, to get a simple list of all pool
names on the system:

zpool list -Ho name
tank
dozer

Or a script-ready version of the earlier example:

zpool list -H -o name,size
tank 80.0G
dozer 1.2T

4.6.2 I/O Statistics
To get I/O statistics for a pool or individual virtual devices, use the zpool iostat
command. Similar to the iostat(1M) command, this can display a static snapshot of
all I/O activity so far, as well as updated statistics every specified interval. The
following statistics are reported:

USED CAPACITY The amount of data currently stored in the pool or
device. This differs from the amount of space available to
actual filesystems by a small amount due to internal
implementation details.

For more information on the difference between pool
space and dataset space, see “3.2 Space Accounting”
on page 26.

AVAILABLE CAPACITY The amount of space available in the pool or device. As
with the used statistic, this is differs from the amount of
space available to datasets by a small margin.

READ OPERATIONS The number of read I/O operations sent to the pool or
device, including metadata requests.

WRITE OPERATIONS The number of write I/O operations sent to the pool or
device.

READ BANDWIDTH The bandwidth of all read operations (including
metadata), expressed as units per second.

WRITE BANDWIDTH The bandwidth of all write operations, expressed as units
per second.

Chapter 4 • Managing Storage Pools 41

4.6.2.1 Pool Wide Statistics
With no options, the zpool iostat command displays the accumulated statistics
since boot for all pools on the system:

zpool iostat
capacity operations bandwidth

pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
tank 100G 20.0G 1.2M 102K 1.2M 3.45K
dozer 12.3G 67.7G 132K 15.2K 32.1K 1.20K

These statistics are since boot, so bandwidth may appear low if the pool is relatively
idle. A more accurate view of current bandwidth usage can be seen by specifying an
interval:

zpool iostat tank 2
capacity operations bandwidth

pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
tank 100G 20.0G 1.2M 102K 1.2M 3.45K
tank 100G 20.0G 134 0 1.34K 0
tank 100G 20.0G 94 342 1.06K 4.1M

The above command displays usage statistics only for the pool tank every two
seconds until the user types Ctrl-C. Alternately, you can specify an additional count
parameter, which causes the command to terminate after the specified number of
iterations. For example, zpool iostat 2 3 would print out a summary every two
seconds for 3 iterations, for a total of six seconds. If there is a single pool, then the
statistics is displayed on consecutive lines as shown above. If there is more than one
pool, then an additional newline delineates each iteration to provide visual separation.

4.6.2.2 Virtual Device Statistics
In addition to pool-wide I/O statistics, the zpool iostat command can also display
statistics for individual virtual devices. This can be used to identify abnormally slow
devices, or simply observe the distribution of I/O generated by ZFS. To see the
complete virtual device layout as well as all I/O statistics, use the zpool iostat -v
command:

zpool iostat -v
capacity operations bandwidth

tank used avail read write read write
---------- ----- ----- ----- ----- ----- -----
mirror 20.4G 59.6G 0 22 0 6.00K
c0t0d0 - - 1 295 11.2K 148K
c1t1d0 - - 1 299 11.2K 148K

---------- ----- ----- ----- ----- ----- -----
total 24.5K 149M 0 22 0 6.00K

42 ZFS Administration Guide • November 2005

There are a few important things to remember when viewing I/O statistics on a
virtual device basis. The first thing you’ll notice is that space usage is only available
for top-level virtual devices. The way in which space is allocated among mirror and
RAID-Z virtual devices is particular to the implementation and not easily expressed as
a single number. The other important thing to note is that numbers may not add up
exactly as you would expect them to. In particular, operations across RAID-Z and
mirrored devices will not be exactly equal. This is particularly noticeable immediately
after a pool is created, as a significant amount of I/O is done directly to the disks as
part of pool creation that is not accounted for at the mirror level. Over time, these
numbers should gradually equalize, although broken, unresponsive, or offlined
devices can affect this symmetry as well.

The same set of options (interval and count) can be used when examining virtual
device statistics as well.

4.6.3 Health Status
ZFS provides an integrated method of examining pool and device health. The health
of a pool is determined from the state of all its devices. This section describes how to
determine pool and device health. It does not document how to repair or recover from
unhealthy pools. For more information on troubleshooting and data recovery, see
Chapter 9.

Each device can fall into one of the following states:

ONLINE The device is in normal working order. While some transient errors
may still be seen, the device is in otherwise working order.

DEGRADED The virtual device has experienced failure, but is still able to
function. This is most common when a mirror or RAID-Z device has
lost one or more constituent devices. The fault tolerance of the pool
may be compromised, as a subsequent fault in another device may be
unrecoverable.

FAULTED The virtual device is completely inaccessible. This typically indicates
total failure of the device, such that ZFS is incapable of sending or
receiving data from it. If a top level virtual device is in this state, then
the pool is completely inaccessible.

OFFLINE The virtual device has been explicitly offlined by the administrator.

Chapter 4 • Managing Storage Pools 43

The health of a pool is determined from the health of all its top-level virtual devices. If
all virtual devices are ONLINE, then the pool is also ONLINE. If any one of them is
DEGRADED, then the pool is also DEGRADED. If a top level virtual device is FAULTED or
OFFLINE, then the pool is also FAULTED. A pool in the faulted state is completely
inaccessible — no data can be recovered until the necessary devices are attached or
repaired. A pool in the degraded state continues to run, but you may not be getting the
same level of data replication level or data throughput you would be if the pool were
online.

4.6.3.1 Basic Health Status
The simplest way to get a quick overview of pool health status is with the zpool
status command:

zpool status -x
all pools are healthy

Particular pools can be examined by specifying a pool name to the command. Any
pool not in the ONLINE state should be investigated for potential problems, as
described in the next section.

4.6.3.2 Detailed Health Status
A more detailed health summary can be found by using the -v option:

zpool status -v tank
pool: tank
state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist

for the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
c0t0d0 FAULTED 0 0 0 cannot open
c0t0d1 ONLINE 0 0 0

This displays a more complete description of why the pool is in its current state,
including a human-readable description of the problem and a link to a knowledge
article for more information. Each knowledge article provides up-to-date information
on the best way to recover from your current situation. Using the detailed
configuration information, you should be able to determine which device is damaged
and how to repair the pool.

44 ZFS Administration Guide • November 2005

If a pool has a faulted or offlined device, the output of this command identifies the
problem pool. For example:

zpool status -x
pool: tank
state: DEGRADED
status: One or more devices has been taken offline by the adminstrator.

Sufficient replicas exist for the pool to continue functioning in a
degraded state.

action: Online the device using ’zpool online’ or replace the device with
’zpool replace’.

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
c0t0d0 OFFLINE 0 0 0
c1t0d0 ONLINE 0 0 0

The READ and WRITE columns gives a count of I/O errors seen on the device, while
the CKSUM column gives a count of uncorrectable checksum errors seen on the device.
Both of these likely indicate potential device failure, and some corrective action is
needed. If you see non-zero errors for a top-level virtual device, it may indicate that
portions of your data have become inaccessible.

For more information on diagnosing and repairing faulted pools and data, see
Chapter 9.

4.7 Storage Pool Migration
It is occasionally necessary to move a storage pool between machines. To do so, the
storage devices must be disconnected from the original machine and reconnected to
the destination machine. This can be accomplished by physically recabling the devices,
or by using multi-ported devices such as those on a SAN. ZFS provides the means to
export the pool from one machine and import it on the destination machine, even if
the machines are of different endianness. For information on replicating or migrating
filesystems between different storage pools (which may be on different machines), see
“5.7 Backing Up and Restoring ZFS Data” on page 74.

Chapter 4 • Managing Storage Pools 45

4.7.1 Preparing for Migration
Storage pools should be explicitly exported to indicate that they are ready to be
migrated. This flushes any unwritten data to disk, write data to the disk indicating
that the export was done, and remove all knowledge of the pool from the system.

If you do not explicitly export the pool, choosing instead to remove the disks
manually, you can still import the resulting pool on another system. However, you
may lose the last few seconds of data transactions, and the original machine will think
the pool is faulted because the devices are no longer present. The destination machine
will also refuse, by default, to import a pool that has not been explicitly exported. This
is because the case is indistinguishable from network attached storage that is still in
use on another system.

4.7.2 Exporting a Pool
To export a pool, use the zpool export command:

zpool export tank

Once this command is executed, the pool tank is no longer visible on the system. The
command attempts to unmount any mounted filesystems within the pool before
continuing. If any of the filesystems fail to unmount, you can forcefully unmount them
by using the -f flag:

zpool export tank
cannot unmount ’/export/home/eschrock’: Device busy
zpool export -f tank

If devices are unavailable at the time of export, the disks cannot be specified as cleanly
exported. If one of these devices is later attached to a system without any of the
working devices, it shows up as “potentially active”. If there are emulated volumes in
the pool that are in use, it cannot be exported, even with the -f option. To export a
pool with an emulated volume, make sure all consumers of the volume are no longer
active first.

For more information on emulated volumes, see “8.1 Emulated Volumes” on page 103.

46 ZFS Administration Guide • November 2005

4.7.3 Determining Available Pools to Import
Once the pool has been removed from the system (either though export or forcefully
removing the devices), attach the devices to the target system. Although ZFS can cope
with some situations where only a portion of the devices are available, in general all
devices within the pool must be moved between the systems. The devices do not
necessarily have to be attached under the same device name; ZFS detects any moved
or renamed devices and adjusts the configuration appropriately. To discover available
pools, run the zpool import command with no options:

zpool import
pool: tank
id: 3824973938571987430916523081746329

state: ONLINE
action: The pool can be imported using its name or numeric identifier. The

pool may be active on on another system, but can be imported using
the ’-f’ flag.

config:

mirror ONLINE
c0t0d0 ONLINE
c0t0d1 ONLINE

In the above example, the pool tank is available to be imported on the target system.
Each pool is identified by a name as well as a unique numeric identifier. In the event
that there are multiple available pools to import with the same name, the numeric
identifier can be used to distinguish between them. The command attempts to display
as much information as possible about the state of the devices in the pool. For
example, if a pool appears to be in use on another system, or was not cleanly exported,
a message similar to the following is displayed:

zpool import
pool: tank
id: 3824973938571987430916523081746329

state: DEGRADED
action: This pool appears to be in use or may not have been

cleanly exported. Use the ’-f’ flag to import this
pool.

see: http://www.sun.com/msg/ZFS-XXXX-13
config:

mirror ONLINE
c0t0d0 ONLINE
c0t0d1 ONLINE

Chapter 4 • Managing Storage Pools 47

Similar to zpool status, the zpool import command refers to a knowledge article
available on the web with the most up-to-date information regarding repair
procedures for this problem. In this case, the user can force the pool to be imported. Be
warned: importing a pool that is currently in use by another system over a storage
network can result in data corruption and panics as both systems attempt to write to
the same storage. If some of the devices in the pool are not available but there is
enough redundancy to have a usable pool, the pool appears in the DEGRADED state:

zpool import
pool: tank
id: 3824973938571987430916523081746329

action: DEGRADED
desc: This pool can be imported despite missing some

devices. The fault tolerance of the pool may
be compromised.

see: http://www.sun.com/msg/ZFS-XXXX-12
config:

mirror DEGRADED
c0t0d0 ONLINE
c0t0d1 FAULTED

In the above case, the second disk is damaged or missing, though you can still import
the pool because the mirrored data is still accessible. If there are too many faulted or
missing devices, the pool cannot be imported:

zpool import
pool: dozer
id: 129384759861034862594739890875563

state: FAULTED
action: This pool cannot be imported because the necessary

devices are missing or damaged. Attach the
unavailable devices and try again.

see: http://www.sun.com/msg/ZFS-XXXX-11
config:

raidz FAULTED
c0t0d0 ONLINE
c0t0d1 FAULTED
c0t0d2 ONLINE
c0t0d3 FAULTED

In this case, there are two disks missing from a RAID-Z virtual device, which means
that there isn’t sufficient replicated data available to reconstruct the pool. There are
even some cases, where not enough devices are present to determine the complete
configuration. In this case, ZFS doesn’t know what other devices were part of the pool,
though it does report as much information as possible about the situation:

zpool import
pool: tank
id: 3824973938571987430916523081746329

state: FAULTED
action: This pool cannot be imported because some

48 ZFS Administration Guide • November 2005

devices are missing. The following is a partial
configuration. Attach the additional unknown devices
and try again.

see: http://www.sun.com/msg/ZFS-XXXX-12
config:

mirror ONLINE
c0t0d0 ONLINE
c0t0d1 ONLINE

Additional devices are known to be part of this pool,
though their exact configuration cannot be determined.

4.7.4 Finding Pools From Alternate Directories
By default, zpool import only searches devices within the /dev/dsk directory. If
you have devices in another directory, or are using pools backed by files, you will
need to use the -d option to search different directories:

zpool create dozer /file/a /file/b
zpool export dozer
zpool import
no pools available
zpool import -d /file
pool: dozer
id: 672153753596386982

state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
/file/a ONLINE
/file/b ONLINE

zpool import -d /file dozer

If you have devices in multiple directories, multiple -d options can be specified.

4.7.5 Importing Pools
Once a pool has been identified for import, you can import it simply by specifying the
name of the pool or its numeric identifier as an argument to the zpool import
command:

zpool import tank

If you have multiple available pools with the same name, you can specify which one
to import using the numeric identifier:

Chapter 4 • Managing Storage Pools 49

zpool import
pool: dozer
id: 2704475622193776801

state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
c1t9d0s0 ONLINE

pool: dozer
id: 6223921996155991199

state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
c1t8d0s0 ONLINE

zpool import dozer
cannot import ’dozer’: more than one matching pool
import by numeric ID instead
zpool import 6223921996155991199

If the name conflicts with an existing pool, you can import it under a different name:

zpool import dozer construct

This command imports the exported pool dozer using the new name construct. If
the pool was not cleanly exported, ZFS requires the -f flag to prevent users from
accidentally importing a pool that is still in use on another system:

zpool import dozer
cannot import ’dozer’: pool may be in use on another system
use ’-f’ to import anyway
zpool import -f dozer

Pools can also be imported under an alternate root using the -R flag. For more
information on alternate root pools, see “8.3 ZFS Alternate Root Pools” on page 108.

50 ZFS Administration Guide • November 2005

CHAPTER 5

Managing Filesystems

This chapter provides detailed information about managing ZFS filesystems. Included
are such concepts as hierarchical filesystem layout, property inheritance, and
automatic mount point management and share interactions.

A ZFS filesystem is a lightweight POSIX file system built on top of a storage pool.
Filesystems can be dynamically created and destroyed without having to allocate or
format any underlying space. Because filesystems are so lightweight, and because they
are the central point of administration in ZFS, administrators are likely to create many
of them.

ZFS filesystems are administered via the zfs command. The zfs(1M) command
provides a set of subcommands which perform specific operations on filesystems. The
following sections of this document describe these subcommands in detail. Snapshots,
volumes, and clones are also managed through the use of zfs(1M), but will only be
covered briefly in this section. For detailed information about snapshots and clones,
see Chapter 6. For detailed information about volumes, see “8.1 Emulated Volumes”
on page 103.

Note: The term dataset is used in this section as a generic term to refer to a filesystem,
snapshot, clone, or volume.

The following sections are provided in this chapter.

� “5.1 Creating and Destroying Filesystems” on page 52
� “5.2 ZFS Properties” on page 54
� “5.3 Querying Filesystem Information” on page 60
� “5.4 Managing Properties” on page 63
� “5.5 Mounting and Sharing File Systems” on page 66
� “5.6 Quotas and Reservations” on page 72
� “5.7 Backing Up and Restoring ZFS Data” on page 74

51

5.1 Creating and Destroying Filesystems
Filesystems can be created and destroyed by using the zfs create and zfs
destroy commands.

5.1.1 Creating a Filesystem
Filesystems are created by using the zfs create command. When creating a
filesystem, the create subcommand takes a single argument: the name of the
filesystem to create. The filesystem name is specified as a path name starting from the
name of the pool: pool_name/[filesystem_name/]filesystem_name. The pool name and
initial filesystem names in the path identify the location in the hierarchy where the
new filesystem should be created. All the intermediate filesystem names must already
exist in the pool. The last name in the path, identifies the name of the filesystem to be
created. The filesystem name must satisfy the naming conventions defined in “1.3 ZFS
Component Naming Conventions” on page 17.

The following example creates a filesystem named bonwick at tank/home.

zfs create tank/home/bonwick

Upon successful creation, ZFS automatically mounts the newly created filesystem. By
default, filesystems are mounted as /dataset, using the path provided for the filesystem
name in the create subcommand. In the above example, the newly created bonwick
filesystem would be mounted at /tank/home/bonwick. For more information on
auto-managed mount points, see “5.5.1 Managing Mount Points” on page 66.

5.1.2 Destroying a Filesystem
To destroy a filesystem, use the zfs destroy command. The destroyed filesystem is
automatically unmounted and unshared. For more information on auto-managed
mounts or auto-managed shares, see “5.5.1.1 Automatic Mount Points” on page 67.
The following example destroys the tabriz filesystem.

zfs destroy tank/home/tabriz

If the filesystem to be destroyed is busy (and so cannot be unmounted), the zfs
destroy command will not succeed. To force the destruction of an active filesystem,
the -f option must be used. This option should be used with caution as it can
unmount, unshare, and destroy active filesystems, causing unexpected application
behavior.

zfs destroy tank/home/ahrens
cannot unmount ’tank/home/ahrens’: Device busy

zfs destroy -f tank/home/ahrens

52 ZFS Administration Guide • November 2005

Thezfs destroy command also fails if a filesystem has children. To force a recursive
destruction of a filesystem and all its descendants, the -r option must be used. Note
that a recursive destroy also destroys snapshots. Great care should be taken when
using this option.

zfs destroy tank/ws
cannot destroy ’tank/ws’: filesystem has children
use ’-r’ to destroy the following datasets:
tank/ws/billm
tank/ws/bonwick
tank/ws/maybee

zfs destroy -r tank/ws

If the filesystem to be destroyed has indirect dependants, even the recursive destroy
command described above fails. To force the destruction of all dependants, including
cloned filesystems outside the target hierarchy, the -R option must be used. This
option should be used with extreme caution.

zfs destroy -r tank/home/schrock
cannot destroy ’tank/home/schrock’: filesystem has dependant clones
use ’-R’ to destroy the following datasets:
tank/clones/schrock-clone

zfs destroy -R tank/home/schrock

For more information about snapshots and clones, see Chapter 6.

5.1.3 Renaming a Filesystem
Filesystems can be renamed by using the zfs rename command. A rename can
change the name of a filesystem and/or it can relocate the filesystem to a new location
within the ZFS hierarchy. The first example below uses the rename subcommand to
do a simple rename of a filesystem.

zfs rename tank/home/kustarz tank/home/kustarz_old

The example above renames the kustarz filesystem to kustarz_old. The next
example shows how to use zfs rename to relocate a filesystem.

zfs rename tank/home/maybee tank/ws/maybee

In the above example, the maybee filesystem was relocated from tank/home to
tank/ws. When relocating through rename, the new location must be within the same
pool and it must have enough space to hold this new filesystem. If the new location
does not have enough space, possibly because it has reached its quota (see “5.6 Quotas
and Reservations” on page 72 for more information), the rename will fail.

The rename operation attempts an unmount/remount sequence for the filesystem and
any descendant filesystems. The rename fails if it is unable to unmount an active
filesystem. If this occurs, manual intervention is needed to force unmount the
filesystem(s).

Chapter 5 • Managing Filesystems 53

For information about renaming snapshots, see “6.1.1.1 Renaming ZFS Snapshots”
on page 78.

5.2 ZFS Properties
Properties are the main mechanism used to control the behavior of filesystems,
volumes, snapshots, and clones. Unless explicitly called out, the properties defined in
the section apply to all the dataset types.

Properties are either readonly statistics, or settable properties. Most settable properties
are also inheritable, where an inheritable property is one that, when set on a parent, is
propagated down to all descendants.

All inheritable properties have an associated source. The source indicates how a
property was obtained. It can have the following values:

local A local source indicates that this property was
explicitly set on this dataset using the zfs set
command (described in “5.4.1 Setting Properties”
on page 63).

inherited from dataset-name A value of inherited from dataset-name means
that this property was inherited from the named
ancestor.

default A value of default means that this property
setting was not inherited nor set locally. This
source is a result of no ancestor having this
property as source local.

Name Type Default Value Description

aclinherit string secure Controls how ACL entries are inherited when
files and directories are created. The values are:
discard, noallow, secure, and
passthrough. For a description of these
values, see “7.1.3 ACL Property Modes”
on page 88.

aclmode string groupmask Controls how an ACL is modified during a
chmod(2) operation. The values are: discard,
groupmask, and passthrough. For a
description of these values, see “7.1.3 ACL
Property Modes” on page 88.

54 ZFS Administration Guide • November 2005

Name Type Default Value Description

atime boolean on Controls whether the access time for files is
updated when they are read.

See the description below.

available number N/A The amount of space available to the dataset and
all its children, assuming that there is no other
activity in the pool.

See the description below.

checksum string on Controls the checksum used to verify data
integrity. The default value is on, which
automatically selects an appropriate algorithm,
currently, fletcher2. The values are
fletcher2, fletcher4, and sha256. A value
of off disables integrity checking on user data;
this is NOT recommended.

compression string off Controls the compression algorithm used for
this dataset. There is currently only one
algorithm, lzjb, though this might change in
future releases.

This property can also be referred to by its
shortened column name compress.

compressratio number N/A The compression ratio achieved for this dataset,
expressed as a multiplier. Compression can be
turned on by running zfs set
compression=on dataset.

creation number N/A The date and time the dataset was created.

devices boolean on Controls whether device nodes can be opened in
the filesystem.

exec boolean on Controls whether processes can be executed
from within this filesystem.

mounted boolean N/A For filesystems, indicates whether the filesystem
is currently mounted. This property can be
either yes or no.

mountpoint string See below Controls the mountpoint used for this
filesystem.

See the description below.

origin string N/A For cloned filesystems or volumes, the snapshot
from which the clone was created. The origin
cannot be destroyed (even with the -r or -f
options) so long as a clone exists.

Chapter 5 • Managing Filesystems 55

Name Type Default Value Description

quota number
(or none)

none Limits the amount of space a dataset and its
descendents can consume.

See the description below.

readonly boolean off Controls whether dataset can be modified. This
property can also be referred to by its shortened
column name, rdonly.

recordsize number 128K Specifies a suggested block size for files in the
file system.

See the description below.

referenced number N/A The amount of data accessible by this dataset,
which may or may not be shared with other
datasets in the pool.

See the description below.

reservation number
(or
none)

none The minimum amount of space guaranteed to a
dataset and its descendents.

See the description below.

sharenfs string off Controls whether the file system is shared via
NFS, and what options are used.

See the description below.

setuid boolean on Controls whether the setuid bit is honored in
the filesystem.

snapdir string visible Controls whether the .zfs directory is hidden
or visible in the root of the file system as
discussed in the Snapshots section.

type string N/A Identifies dataset type such as filesystem
(filesystem/clone), volume, or snapshot.

used number N/A The amount of space consumed by this dataset
and all its descendants.

See the detailed description below.

volsize number See below For volumes, specifies the logical size of the
volume. See the description below.

volblocksize number See below For volumes, specifies the block size of the
volume. See the description below.

zoned boolean See below Controls whether the dataset is managed from a
non-global zone. The default value is off.

See the detailed description below.

56 ZFS Administration Guide • November 2005

5.2.1 Read-Only Properties
Read-only properties are properties that can be retrieved but cannot be set. Read-only
properties are not inherited. Some properties are specific to a particular type of
dataset; in such cases the particular dataset type is called out in the description.

� available — The amount of space available to the dataset and all its children,
assuming no other activity in the pool. Because space is shared within a pool, this
can be limited by any number of factors, including physical pool size, quotas,
reservations, or other datasets within the pool.

This property can also be referred to by its shortened column name, avail.

For more information about space accounting, see “3.2 Space Accounting” on page
26.

This property can also be referred to by its shortened column name, avail.

� creation — Date and time that this dataset was created.

� mounted — Indicates whether this filesystem, clone, or snapshot is currently
mounted; does not apply to volumes.

� origin — For cloned filesystems only; the snapshot from which this clone
originated. Non-cloned filesystems have an origin of none. The origin cannot be
destroyed so long as a clone exists.

� compressratio — The compression ratio achieved on this dataset. Calculated
from the logical size of all files and the amount of referenced physical data.
Includes explicit savings through the use of the compression property.

� referenced — The amount of data accessible by this dataset, which may or may
not be shared with other datasets in the pool. When a snapshot or clone is created,
it initially references the same amount of space as the file system or snapshot it was
created from, since its contents are identical. This property can also be referred to
by its shortened column name, refer.

� type — Dataset type such as filesystem (filesystem/clone), volume, or
snapshot

� used — The amount of space consumed by this dataset and all its descendants.
This is the value that is checked against this dataset’s quota and reservation. The
space used does not include this dataset’s reservation, but does take into account
the reservations of any descendant datasets. The amount of space that a dataset
consumes from its parent, as well as the amount of space that is freed if this dataset
is recursively destroyed, is the greater of its space used and its reservation.

When snapshots are created, their space is initially shared between the snapshot
and the file system, and possibly with previous snapshots. As the file system
changes, space that was previously shared becomes unique to the snapshot, and
counted in the snapshot’s space used. Additionally, deleting snapshots can increase
the amount of space unique to (and used by) other snapshots. For more
information about snapshots and space issues, see “3.3 Out of Space Behavior”
on page 26.

Chapter 5 • Managing Filesystems 57

The amount of space used, available, or referenced does not take into account
pending changes. Pending changes are generally accounted for within a few
seconds. Committing a change to a disk using fsync(3c) or O_SYNC does not
necessarily guarantee that the space usage information will be updated
immediately.

For more information on space accounting: including the used, referenced, and
available properties listed above see “3.2 Space Accounting” on page 26.

5.2.2 Settable Properties
Settable properties are properties whose values can be both retrieved and set. Settable
properties are set via the zfs set interface described in “5.4.1 Setting Properties”
on page 63. With the exceptions of quotas and reservations, settable properties are
inherited. For more information on quotas and reservations, see “5.6 Quotas and
Reservations” on page 72.

Some settable properties are specific to a particular type of dataset; in such cases the
particular dataset type is called out in the description field of the table. If not
specifically mentioned, a property applies to all dataset types: filesystems, volumes,
clones, and snapshots.

� atime — Controls whether the access time for files is updated when read. Turning
this property off avoids producing write traffic when reading files and can result in
significant performance gains, though it may confuse mailers and other similar
utilities.

� checksum — Controls the checksum used to verify data integrity. The value on
automatically selects an appropriate algorithm (currently fletcher2, but this
may change in future releases). The value off disables integrity checking on user
data; this is not recommended.

� compression — Controls the compression algorithm used for this dataset. The
value on automatically selects an appropriate algorithm. There is currently only
one algorithm, lzjb, though this may change in future releases.

� devices — Controls whether device nodes found within this filesystem can be
opened.

� exec — Controls whether programs within this filesystem are allowed to be
executed. Also, when set to off, mmap(2) calls with PROT_EXEC will be
disallowed.

� mountpoint — Controls the mount point used for this filesystem. When the
mountpoint property is changed for a filesystem, the filesystem and any children
that inherit the mount point are unmounted. If the new value is legacy, then they
remain unmounted. Otherwise, they are automatically remounted in the new
location if the property was previously legacy or none, or if they were mounted
before the property was changed. In addition, any shared file systems are unshared
and shared in the new location.

58 ZFS Administration Guide • November 2005

For more information on using this property, see “5.5.1 Managing Mount Points”
on page 66.

� quota — Limits the amount of space a dataset and its descendents can consume.
This enforces a hard limit on the amount of space used. This includes all space
consumed by descendents, including file systems and snapshots. Setting a quota on
a descendent of a dataset that already has a quota does not override the ancestor’s
quota, but rather imposes an additional limit. Quotas cannot be set on volumes, as
the volsize property acts as an implicit quota.

For information about setting quotas, see “5.6.1 Setting Quotas” on page 72.

� readonly — Controls whether this dataset can be modified. When set to on, no
modifications can be made to the dataset.

� recordsize — Specifies a suggested block size for files in the file system. This
property is designed solely for use with database workloads that access files in
fixed-size records. ZFS automatically tunes block sizes according to internal
algorithms optimized for typical access patterns. For databases that create very
large files but access them in small random chunks, these algorithms may be
suboptimal. Specifying a recordsize greater than or equal to the record size of
the database can result in significant performance gains. Use of this property for
general purpose file systems is strongly discouraged, and may adversely affect
performance. The size specified must be a power of two greater than or equal to
512 and less than or equal to 128 Kbytes. Changing the filesystem’s recordsize
only affects files created afterward; existing files are unaffected.

This property can also be referred to by its shortened column name, recsize.

� reservation — The minimum amount of space guaranteed to a dataset and its
descendents. When the amount of space used is below this value, the dataset is
treated as if it were taking up the amount of space specified by its reservation.
Reservations are accounted for in the parent datasets’ space used, and count
against the parent datasets’ quotas and reservations. This property can also be
referred to by its shortened column name, reserv.

For more information, see “5.6.2 Setting Reservations” on page 73).

� sharenfs — Controls whether the filesystem is shared via NFS, and what options
are used. A filesystem with a sharenfs property of off is managed through
traditional tools such as share(1M), unshare(1M), and dfstab(4). Otherwise, the
filesystem is automatically shared and unshared with the zfs share and zfs
unshare commands. If the property is set to on, the share(1M) command is
invoked with no options. Otherwise, the share(1M) command is invoked with
options equivalent to the contents of this property. When the sharenfs property
is changed for a dataset, the dataset and any children are re-shared with the new
options, only if the property was previously off, or if they were shared before the
property was changed. If the new property is off, the filesystems are unshared.

For more information on sharing ZFS filesystems, see “5.5.5 Sharing ZFS File
Systems” on page 70.

� setuid — Controls whether the set-UID bit is respected for the filesystem.

Chapter 5 • Managing Filesystems 59

� snapdir — Controls whether the .zfs directory is hidden or visible in the root of
the file system. For more information on using snapshots, see “6.1 ZFS Snapshots”
on page 77.

� volsize — The logical size of the volume. By default, creating a volume
establishes a reservation for the same amount. Any changes to volsize are
reflected in an equivalent change to the reservation. These checks are used to
prevent unexpected behavior for consumers. A volume which contains less space
than it claims is available can result in undefined behavior or data corruption,
depending on how the volume is used. These effects can also occur when the
volume size is changed while it is in use (particularly when shrinking the size).
Extreme care should be used when adjusting the volume size.

Though not recommended, you can create a sparse volume by specifying the -s flag
to zfs create -V, or by changing the reservation once the volume has been
created. A sparse volume is defined as a volume where the reservation is not equal
to the volume size. For a sparse volume, changes to volsize are not reflected in
the reservation.

For more information about using volumes, see “8.1 Emulated Volumes” on page
103.

� volblocksize — For volumes, specifies the block size of the volume. The
blocksize cannot be changed once the volume has been written, so it should be set
at volume creation time. The default blocksize for volumes is 8 Kbytes. Any power
of 2 from 512 bytes to 128 Kbytes is valid.

This property can also be referred to by its shortened column name, volblock.

� zoned — Indicates whether this dataset has been added to a non-global zone. If
this is set, then the mount point is not respected in the global zone, and ZFS refuses
to mount such a filesystem when asked. When a zone is first installed, this is set for
any added filesystems. For more information on using ZFS with zones installed,
see “8.2 Using ZFS on a Solaris System With Zones Installed” on page 104.

5.3 Querying Filesystem Information
The zfs list command provides an extensible mechanism for viewing and querying
dataset information. Both basic and complex queries are explained in this section.

5.3.1 Listing Basic Information
Basic dataset information can be seen using zfs list with no options. This
invocation will display the names of all datasets on the system include their used,
available, referenced, and mountpoint properties. See “5.2 ZFS Properties”
on page 54 for more information about these properties.

60 ZFS Administration Guide • November 2005

zfs list
NAME USED AVAIL REFER MOUNTPOINT
pool 84.0K 33.5G - /pool
pool/clone 0 33.5G 8.50K /pool/clone
pool/test 8K 33.5G 8K /test
pool/home 17.5K 33.5G 9.00K /pool/home
pool/home/marks 8.50K 33.5G 8.50K /pool/home/marks
pool/home/marks@snap 0 - 8.50K /pool/hopme/marks@snap

The zfs list command can be refined to display specific datasets by providing the
dataset name on the command line. Additionally, the -r option can be added to
recursively display all descendants of that dataset. The example below uses zfs list
to display tank/home/chua and all of its descendant datasets.

zfs list -r tank/home/chua
NAME USED AVAIL REFER MOUNTPOINT
tank/home/chua 26.0K 4.81G 10.0K /tank/home/chua
tank/home/chua/projects 16K 4.81G 9.0K /tank/home/chua/projects
tank/home/chua/projects/fs1 8K 4.81G 8K /tank/home/chua/projects/fs1
tank/home/chua/projects/fs2 8K 4.81G 8K /tank/home/chua/projects/fs2

5.3.2 Complex Queries
The output displayed by zfs list can be customized through the use of the -o, -f,
and -H options.

The -o option provides support for customizing the property value to be output. This
option expects a comma separated list of the desired properties where any dataset
property can be supplied as a valid value. See “5.2 ZFS Properties” on page 54 for a
list of all supported dataset properties. In addition to the properties defined in the
Properties section, the -o option list can also contain the literal name to indicate that
the output should display the name of the dataset. The example below uses zfs list
to display the dataset name along with the sharenfs and mountpoint properties.

zfs list -o name,sharenfs,mountpoint
NAME SHARENFS MOUNTPOINT
tank rw /export
tank/archives rw /export/archives
tank/archives/zfs rw /export/archives/zfs
tank/calendar off /var/spool/calendar
tank/cores rw /cores
tank/dumps rw /export/dumps
tank/home rw /export/home
tank/home/ahl rw /export/home/ahl
tank/home/ahrens rw /export/home/ahrens
tank/home/andrei rw /export/home/andrei
tank/home/barts rw /export/home/barts
tank/home/billm rw /export/home/billm
tank/home/bjw rw /export/home/bjw
tank/home/bmc rw /export/home/bmc
tank/home/bonwick rw /export/home/bonwick

Chapter 5 • Managing Filesystems 61

tank/home/brent rw /export/home/brent
tank/home/dilpreet rw /export/home/dilpreet
tank/home/dp rw /export/home/dp
tank/home/eschrock rw /export/home/eschrock
tank/home/fredz rw /export/home/fredz
tank/home/johansen rw /export/home/johansen
tank/home/jwadams rw /export/home/jwadams
tank/home/lling rw /export/home/lling
tank/home/mws rw /export/home/mws
tank/home/rab rw /export/home/rab
tank/home/sch rw /export/home/sch
tank/home/tabriz rw /export/home/tabriz
tank/home/tomee rw /export/home/tomee

The -t option provides the capability of specifying which type(s) of dataset(s) should
be output. The valid types can be seen in the table below.

TABLE 5–1 Types of Datasets

Type Description

filesystem Display filesystem and clone datasets

volume Display volume datasets

snapshot Display snapshot datasets

The -t options takes a comma separated list of the types of datasets to be displayed.
The example below uses the -t and -o options simultaneously to show the name and
used property for all filesystems.

zfs list -t filesystem -o name,used
NAME USED
pool 105K
pool/container 0
pool/home 26.0K
pool/home/tabriz 26.0K
pool/home/tabriz_clone 0

The -H option can be used to omit the zfs list header from the generated output.
When using the -H option, all white space is output as tabs. This option can be useful
when parseable output is needed (for example, when scripting). The example below
shows the output generated from an invocation of zfs list using the -H option.

zfs list -H -o name
pool
pool/container
pool/home
pool/home/tabriz
pool/home/tabriz@now
pool/home/tabriz/container
pool/home/tabriz/container/fs1
pool/home/tabriz/container/fs2
pool/home/tabriz_clone

62 ZFS Administration Guide • November 2005

5.4 Managing Properties
Dataset properties are managed through the set, inherit, and get subcommands.

5.4.1 Setting Properties
The zfs set command can be used to modify any settable dataset property, see “5.2.2
Settable Properties” on page 58 for a list of settable dataset properties. The zfs set
command takes a property/value sequence in the format of property=value and a
dataset name. The example below sets theatime property to off for tank/home.
Only one property can be set/modified per zfs set invocation.

zfs set atime=off tank/home

Numeric properties can be specified using the following human-readable suffixes (in
order of magnitude) BKMGTPEZ. Any of these suffixes can be followed by an optional
b, indicating bytes, with the exception of the B suffix which already indicates bytes.
The following four invocations of zfs set are equivalent numeric expressions
indicating that the quota property should be set to the value of 50 gigabytes on the
tank/home/marks filesystem.

zfs set quota=50G tank/home/marks
zfs set quota=50g tank/home/marks
zfs set quota=50GB tank/home/marks
zfs set quota=50gb tank/home/marks

Non-numeric properties are case sensitive and must be lower case, with the exception
of mountpoint and sharenfs which may have mixed upper and lower case letters.

5.4.2 Inheriting Properties
All settable properties, with the exception of quotas and reservations, inherit their
value from their parent, unless explicitly set by the child. If no ancestor has an explicit
value set for an inherited property, the default value for the property is used. The zfs
inherit command is used to clear a property setting, thus causing the setting to be
inherited from the parent.

The following example useszfs set to turn on compression, and then zfs inherit
to unset the compression property, thus causing it to inherit the default setting of
off. Note, since neither home nor pool have the compression property locally set (via
zfs set), the default value is used. If both had it set, the value set in the most
immediate ancestor would be used (home in this example).

zfs set compression=on tank/home/bonwick
zfs get -r compression tank
NAME PROPERTY VALUE SOURCE

Chapter 5 • Managing Filesystems 63

tank compression off default
tank/home compression off default
tank/home/bonwick compression on local
zfs inherit compression tank/home/bonwick
zfs get -r compression tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank/home compression off default
tank/home/bonwick compression off default

The inherit subcommand is applied recursively when the -r option is specified.
The following example causes the value for the compression property to be inherited
by tank/home and any descendants it may have.

zfs inherit -r compression tank/home

Be aware that the use of the -r option clears the current property setting for all
descendant datasets.

5.4.3 Querying Properties
The simplest way to query property values is zfs list (see “5.3.1 Listing Basic
Information” on page 60). However, for complicated queries and scripting, the zfs
get subcommand can provide more detailed information in a customized format.

The zfs get subcommand can be used to retrieve any dataset property. The example
below shows how to retrieve a single property on a dataset.

zfs get checksum tank/ws
NAME PROPERTY VALUE SOURCE
tank/ws checksum on default

The fourth column, SOURCE, indicates where this property value has been set from.
The table below defines the meaning of the possible source values.

TABLE 5–2 Possible SOURCE Values (zfs get)

Value Description

default This property was never explicitly set for this dataset or any
of its ancestors. The default value for this property is being
used.

inherited from dataset_name This property value is being inherited from the parent
specified by dataset_name.

local This property value was explicitly set, using zfs set, for
this dataset.

64 ZFS Administration Guide • November 2005

TABLE 5–2 Possible SOURCE Values (zfs get) (Continued)
Value Description

temporary This property value was set using the zfs mount -o option
and is only valid for the lifetime of the mount (for more
information on temporary mount point properties, see “5.5.3
Temporary Mount Properties” on page 69).

- (none) This is a read-only property, its value is generated by ZFS.

The special keyword all can be used to retrieve all dataset properties. The example
below uses the all keyword to retrieve all existing dataset properties.

zfs get all pool
NAME PROPERTY VALUE SOURCE
pool type filesystem -
pool creation Sat Nov 12 11:41 2005 -
pool used 32K -
pool available 33.5G -
pool referenced 8K -
pool compressratio 1.00x -
pool mounted yes -
pool quota none default
pool reservation none default
pool recordsize 128K default
pool mountpoint /pool default
pool sharenfs off default
pool checksum on default
pool compression on local
pool atime on default
pool devices on default
pool exec on default
pool setuid on default
pool readonly off default
pool zoned off default
pool snapdir visible default
pool aclmode groupmask default
pool aclinherit secure default

The -s option to zfs get provides the ability to specify, by source value, the type of
properties to be output. This option takes a comma separated list indicating the source
types desired. Any property that does not have the specified source type isn’t
displayed. The valid source types are: local, default, inherited, temporary,
and none. The example below shows all properties that have been locally set on pool.

zfs get -s local all pool
NAME PROPERTY VALUE SOURCE
pool compression on local

Any of the above options can be combined with the -r option to recursively get the
specified properties on all children of the specified dataset. The following example
recursively retrieves all temporary properties on all datasets within tank.

zfs get -r -s temporary all tank
NAME PROPERTY VALUE SOURCE

Chapter 5 • Managing Filesystems 65

tank/home atime off temporary
tank/home/bonwick atime off temporary
tank/home/marks atime off temporary

5.4.4 Querying Properties for Scripting
The zfs get subcommand supports the -H and -o options. These options are
designed for scripting. The -H indicates that any header information should be
omitted and that all white space should come in the form of tabs; uniform white space
allows for easily parseable data. The -o option allows the user to customize the
output. This option takes a comma separated list of values to be output. All properties,
defined in “5.2 ZFS Properties” on page 54, along with the literals name, value,
property and source can be supplied in the -o list.

The following example shows how to retrieve a single value using the -H and -o
options of zfs get.

zfs get -H -o value compression tank/home
on

A-p option is supported that reports numeric values as their exact values. For
example, 1 Mbyte would be reported as 1000000. This option can be used as follows:

zfs get -H -o value -p used tank/home
182983742

The -r option along with any of the above options can be used to recursively get the
requested value(s) for all descendants. The following example uses the -r, -o, and -H
options to output the dataset name and the value of the used property for
export/home and its descendants, while omitting any header output.

zfs get -H -o name,value -r used export/home
export/home 5.57G
export/home/marks 1.43G
export/home/maybee 2.15G

5.5 Mounting and Sharing File Systems
This section describes how mount points and shared filesystems are managed in ZFS.

5.5.1 Managing Mount Points
By default, all ZFS filesystems are mounted by ZFS at boot via the
svc://system/filesystem/local smf(5) service. Filesystems are mounted
under /path, where path is the name of the filesystem.

66 ZFS Administration Guide • November 2005

The default mount point can be overridden by setting the mountpoint property to a
specific path using the zfs set command. ZFS automatically creates this mount
point, if needed, and automatically mounts this filesystems when zfs mount -a is
invoked, without having to edit the /etc/vfstab file.

The mountpoint property is inherited. For example, if pool/home has mountpoint
set to /export/stuff, then pool/home/user inherits /export/stuff/user for
mountpoint.

The mountpoint property can be set to none to prevent the filesystem from being
mounted.

If desired, filesystems can also be explicitly managed through legacy mount interfaces
by setting the mountpoint property to legacy via zfs set. Doing so prevents ZFS
from automatically mounting and managing this filesystem; legacy tools including the
mount and umount commands, and the /etc/vfstab file must be used instead.
Legacy mounts are discussed in more detail below.

When changing mount point management strategies, the following behaviors apply:

5.5.1.1 Automatic Mount Points
� When changing from legacy or none, ZFS automatically mounts the filesystem.

� If ZFS is currently managing the filesystem but it is currently unmounted, and the
mountpoint property is changed, the filesystem remains unmounted.

The default mount point for the root dataset can also be set at creation time by using
zpool create’s -m option. For more information on creating pools, see “4.4.1
Creating a Pool” on page 32.

Any dataset whose mountpoint property is not legacy is managed by ZFS. The
example below creates a dataset that is managed by ZFS.

zfs create pool/filesystem
zfs get mountpoint pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /pool/filesystem default
zfs get mounted pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

The mountpoint property can also be explicitly set as shown in the example below.

zfs set mountpoint=/mnt pool/filesystem
zfs get mountpoint pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /mnt local
zfs get mounted pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

Chapter 5 • Managing Filesystems 67

When the mountpoint property is changed, the filesystem is automatically
unmounted from the old mount point and remounted to the new mount point. Mount
point directories are created as needed. If ZFS is unable to unmount a filesystem, due
to it being active, an error is reported and a forced manual unmount will be necessary.

5.5.1.2 Legacy Mount Points
Filesystems can be managed via legacy tools by setting the mountpoint property to
legacy. Legacy filesystems must be managed through the mount and umount
commands and the /etc/vfstab file. ZFS does not automatically mount legacy
filesystems on boot, and the ZFS mount and umount command do not operate on
datasets of this type. The examples below show how to set up and manage a ZFS
dataset in legacy mode.

zfs set mountpoint=legacy tank/home/eschrock
mount -F zfs tank/home/eschrock /mnt

In particular, if you have set up separate ZFS /usr or /var file systems, you will need
to indicate that they are legacy file systems and you must mount them by creating
entries in the /etc/vfstab file. Otherwise, the system/filesystem/local
service enters maintenance mode when the system boots.

To automatically mount a legacy filesystem on boot, an entry to the /etc/vfstab file
must be added. The following example shows what the entry in the /etc/vfstab file
might look like.

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#

tank/home/eschrock - /mnt zfs - yes -

Note that the device to fsck and fsck pass entries are set to -. This is because
the fsck(1M) command is not applicable to ZFS filesystems. See “1.1.2 Transactional
Semantics” on page 14 for more information regarding data integrity and the lack of
need for fsck in ZFS.

5.5.2 Mounting File Systems
ZFS automatically mounts filesystems on create or boot. Use of the zfs mount
subcommand is only necessary when changing mount options or explicitly mounting
or unmounting filesystems.

The zfs mount command with no arguments shows all currently mounted
filesystems that are managed by ZFS. Legacy managed mount points are not
displayed.

zfs mount
tank /tank
tank/home /tank/home

68 ZFS Administration Guide • November 2005

tank/home/bonwick /tank/home/bonwick
tank/ws /tank/ws

The -a option can be used to mount all ZFS managed filesystems. Legacy managed
filesystems are not mounted.

zfs mount -a

By default, ZFS does not allow mounting on top of a non-empty directory. To force a
mount on top of a non-empty directory, the -O option must be used.

zfs mount tank/home/alt
cannot mount ’/export/home/alt’: directory is not empty
use legacy mountpoint to allow this behavior, or use the -O flag
zfs mount -O tank/home/alt

Legacy mount points must be managed through legacy tools. An attempt to use ZFS
tools result in an error.

zfs mount pool/home/billm
cannot mount ’pool/home/billm’: legacy mountpoint
use mount(1M) to mount this filesystem
mount -F zfs tank/home/billm

When a filesystem is mounted, it uses a set of mount options based on the property
values associated with the dataset. The correlation between properties and mount
options is as follows:

Property Mount Options

devices devices/nodevices

exec exec/noexec

readonly ro/rw

setuid setuid/nosetuid

The mount option nosuid is an alias for nodevices,nosetuid.

5.5.3 Temporary Mount Properties
If any of the above options are set explicitly using the-o option at mount, the
associated property value is temporarily overridden. These property values are
reported as temporary by zfs get and revert back to their original settings when
the filesystem is unmounted. If a property value is changed while the dataset is
mounted, the change takes effect immediately, overriding any temporary setting.

The following example temporarily sets the read-only option on tank/home/perrin.

zfs mount -o ro tank/home/perrin

Chapter 5 • Managing Filesystems 69

The above example assumes that the filesystem is unmounted. To temporarily change
a property on a filesystem that is currently mounted, the special remount option must
be used. The following example temporarily changes the atime property to off for a
filesystem that is currently mounted.

zfs mount -o remount,noatime tank/home/perrin
zfs get atime tank/home/perrin
NAME PROPERTY VALUE SOURCE
tank/home/perrin atime off temporary

5.5.4 Unmounting File Systems
Filesystems can be unmounted by using the zfs unmount subcommand. The
unmount command can take either the mount point or the filesystem name.

Unmounting by filesystem name.

zfs unmount tank/home/tabriz

Unmounting by mount point.

zfs unmount /export/home/tabriz

The unmount command fails if the filesystem is active or busy. To forceably unmount
a filesystem, the -f option can be used. Care should be taken when forceably
unmounting a filesystem, if its contents are actively being used, unpredictable
application behavior can result.

zfs unmount tank/home/eschrock
cannot unmount ’/export/home/eschrock’: Device busy
zfs unmount -f tank/home/eschrock

To provide for backwards compatibility, the legacy umount(1M) command can be
used to unmount ZFS filesystems.

umount /export/home/bob

5.5.5 Sharing ZFS File Systems
Like mountpoints, ZFS can automatically share filesystems through the use of the
sharenfs property. Using this method, the administrator does not have to modify the
/etc/dfs/dfstab file when a new filesystem is added. The sharenfs property is a
comma-separated list of options to pass to the share(1M) command. The special value
on is an alias for the default share options, which are read/write permissions for
anyone. The special value off indicates that the filesystem is not managed by ZFS,
and can be shared through traditional means such as the /etc/dfs/dfstab file. All
filesystems whose sharenfs property is not off are shared during boot.

70 ZFS Administration Guide • November 2005

5.5.5.1 Controlling Share Semantics
By default, all filesystems are unshared. To share a new filesystem, run the following
command:

zfs set sharenfs=on tank/home/eschrock

The property is inherited, and filesystems are automatically shared on creation if their
inherited property is not off. For example:

zfs set sharenfs=on tank/home
zfs create tank/home/bricker
zfs create tank/home/tabriz
zfs set sharenfs=ro tank/home/tabriz

Both tank/home/briker and tank/home/tabriz are initially shared writable
since they inherit the sharenfs property from tank/home. Once the property is set
to ro (readonly), tank/home/tabriz is shared readonly regardless of the sharenfs
property set for tank/home.

5.5.5.2 Unsharing Filesystems
While most filesystems are automatically shared and unshared during boot, creation,
and destruction, there are times when filesystems need to be explicitly unshared. To
do this, use the zfs unshare command:

zfs unshare tank/home/tabriz

This command unshares the tank/home/tabriz filesystem. To unshare all ZFS
filesystems on the system, run:

zfs unshare -a

5.5.5.3 Sharing Filesystems
As mentioned in the previous section, most of the time the automatic behavior of ZFS
(sharing on boot and creation) should be sufficient for normal operation. If, for some
reason, you unshare a filesystem, you can share it again with the zfs share
command:

zfs share tank/home/tabriz

You can also share all ZFS filesystems on the system:

zfs share -a

Chapter 5 • Managing Filesystems 71

5.5.5.4 Legacy Shares
If the sharenfs property is off, then ZFS does not attempt to share or unshare the
filesystem at any time. This allows the filesystem to be administered through
traditional means such as the /etc/dfs/dfstab file.

Unlike the traditional mount command, the traditional share and unshare
commands can still function on ZFS filesystems. This means that it’s possible to
manually share a filesystem with options that are different from those of the
sharenfs property. This administrative model is discouraged. You should choose to
either manage NFS shares completely through ZFS or completely through the
/etc/dfs/dfstab file. The ZFS administrative model is designed to be simpler and
less work than the traditional model, but there are some cases where you may still
want to control shares through the familiar model.

5.6 Quotas and Reservations
ZFS supports quotas and reservations at the filesystem level. Filesystem properties
provide the ability to set a limit on the amount of space a filesystem can use by setting
the quota property as well as the ability to guarantee some amount of space is
available to a filesystem by setting the reservation property. Both of these
properties apply to the dataset they are set on and all descendants of that dataset.

That is, if a quota is set on tank/home dataset, the total space used by tank/home
and all of its descendants cannot exceed the quota. Similarly, if tank/home is given a
reservation, tank/home and all of its descendants draw from that reservation. The
amount of space used by a dataset (and all of its descendents) is reported by the used
property.

5.6.1 Setting Quotas
ZFS quotas can be set and displayed with the zfs set and zfs get commands. The
following example sets a quota of 10 Gbytes on tank/home/bonwick.

zfs set quota=10G tank/home/bonwick
zfs get quota tank/home/bonwick
NAME PROPERTY VALUE SOURCE
tank/home/bonwick quota 10.0G local

ZFS quotas also impact the output of the zfs list and df commands.

72 ZFS Administration Guide • November 2005

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank/home 16.5K 33.5G 8.50K /export/home
tank/home/bonwick 15.0K 10.0G 8.50K /export/home/bonwick
tank/home/bonwick/ws 6.50K 10.0G 8.50K /export/home/bonwick/ws
df -h /export/home/bonwick
Filesystem size used avail capacity Mounted on
tank/home/bonwick 10G 8K 10G 1% /export/home/bonwick

Note that although tank/home has 33.5 Gbytes of space available,
tank/home/bonwick and tamk/home/bonwick/ws only have 10 Gbytes of space
available, due to the quota on tank/home/bonwick.

It is not possible to set a quota to an amount less than is currently being used by a
dataset.

zfs set quota=10K tank/home/bonwick
cannot set quota for ’tank/home/bonwick’: size is less than current used or
reserved space

5.6.2 Setting Reservations
A ZFS reservation is an allocation of space from the pool that is guaranteed to be
available to a dataset. As such, it is not possible to reserve space for a dataset if that
space is not currently available in the pool. The total of all outstanding unconsumed
reservations cannot exceed the amount of unused space in the pool. ZFS reservations
can be set and displayed with the zfs set and zfs get commands.

zfs set reservation=5G tank/home/moore
zfs get reservation tank/home/moore
NAME PROPERTY VALUE SOURCE
tank/home/moore reservation 5.00G local

ZFS reservations can influence the output of the zfs list command.

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank/home 5.00G 33.5G 8.50K /export/home
tank/home/moore 15.0K 10.0G 8.50K /export/home/moore

Note that tank/home shows that it is using 5 Gbytes of space, although the total
space referred to by tank/home and its descendants is much less than 5 Gbytes. The
used space reflects the space reserved for tank/home/moore. Reservations are
accounted for in the used space of the parent dataset and do count against its quota
and/or reservation.

zfs set quota=5G pool/filesystem
zfs set reservation=10G pool/filesysetm/user1
cannot set reservation for ’pool/filesystem/user1’: size is greater than
available space

Chapter 5 • Managing Filesystems 73

A dataset can use more space than its reservation, so long as there is space available in
the pool that is unreserved and it is below its quota. A dataset cannot consume space
that has been reserved for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a
reservation does not add its reservation to the existing one, rather it replaces it.

zfs set reservation=10G tank/home/moore
zfs set reservation=5G tank/home/moore
zfs get reservation tank/home/moore
NAME PROPERTY VALUE SOURCE
tank/home/moore reservation 5.00G local

5.7 Backing Up and Restoring ZFS Data
You can backup and restore ZFS filesystem snapshots and the original filesystems by
using the zfs backup and zfs restore commands.

The following ZFS backup and restore solutions are provided:

� Creating ZFS snapshots and rolling back snapshots, if necessary.

� Creating full and incremental backups of ZFS snapshots and restoring the
snapshots, if necessary.

� Remotely replicating ZFS file systems by backing up and restoring a ZFS snapshot
and file system.

Consider the following when choosing a ZFS backup solution:

� File system snapshots and rolling back snapshots - Use the zfs snapshot and
zfs rollback commands if you want to easily create a copy of a file system and
revert back to a previous file system version, if necessary. For example, if you want
to restore a file or files from a previous version of a file system.

For more information about creating and rolling back to a snapshot, see “6.1 ZFS
Snapshots” on page 77.

� Backing up file system snapshots - Use the zfs backup and zfs restore
commands to back up and restore a ZFS file system snapshot. You can backup
incremental changes between snapshots, but you cannot restore files individually.
You must restore the entire file system snapshot.

� Remote replication - Use the zfs backup and zfs restore commands when
you want to copy a file system from one system to another. This process is different
from a traditional volume management product that might mirror devices across a
WAN. There is no special configuration or hardware required. The advantage of
replicating a ZFS file system is that you can recreate a file system on a storage pool

74 ZFS Administration Guide • November 2005

on another system, and specify different levels of configuration for the newly
created pool, such as RAID-Z, but with identical file system data.

5.7.1 Backing Up ZFS Filesystems With Other
Backup Products
In addition to the zfs backup and zfs restore commands, you can also use
backup utilities, such as the tar and cpio commands, to back up ZFS files. All of
these utilities backup and restore ZFS file attributes and ACLs. Check the appropriate
options for both the tar and cpio commands.

Keep the following issues in mind when using other backup products to back up ZFS
files:

� Veritas Backup software – You can use this product to back up ZFS files, but it
silently ignores ACLs on ZFS files. (CR 6352899)

� Legato NetWorker™ software – Currently, this product cannot be used to backup
ZFS files. (CR 6349974)

5.7.2 Backing Up a ZFS Snapshot
The simplest form of the zfs backup command is to backup a snapshot. For
example:

zfs backup tank/dana@111505 > /dev/rmt/0

You can create an incremental backup by using the zfs backup -i option. For
example:

zfs backup -i tank/dana@111505 tank/dana@now > /dev/rmt/0

Note that the first argument is the earlier snapshot and the second argument is the
later snapshot.

If you need to store many backups, you might consider compressing a ZFS backup
with gzip. For example:

zfs backup pool/fs@snap | gzip > backupfile.gz

Chapter 5 • Managing Filesystems 75

5.7.3 Restoring a ZFS Snapshot
When you restore a file system snapshot, the file system is restored as well. The file
system is unmounted and is inaccessible while it is being restored. In addition, the
original file system to be restored must not exist while it is being restored. If there is a
conflicting filesystem name, zfs rename can be used to rename it. For example:

zfs backup tank/gozer@111105 > /dev/rmt/0

.

.

.
zfs restore tank/gozer2@today < /dev/rmt/0
zfs rename tank/gozer tank/gozer.old
zfs rename tank/gozer2 tank/gozer

When you restore an incremental file system snapshot, the most recent snapshot must
first be rolled back. In addition, the destination file system must exist. To restore the
previous incremental backup for tank/dana, for example:

zfs rollback tank/dana@111505
cannot rollback to ’tank/dana@111505’: more recent snapshots exist
use ’-r’ to force deletion of the following snapshots:
tank/dana@now
zfs rollback -r tank/dana@111505
zfs restore tank/dana < /dev/rmt/0

During the incremental restore process, the filesystem is unmounted and cannot be
accessed.

5.7.4 Remote Replication of a ZFS File System
You can also use the zfs backup and zfs restore commands to remotely copy a
file system from one system to another system. For example:

zfs backup tank/cindy@today | ssh newsys zfs restore sandbox/restfs@today
restoring backup of tank/cindy@today

into sandbox/restfs@today ...
restored 17.8Kb backup in 1 seconds (17.8Kb/sec)

The syntax above backs up thetank/cindy@today snapshot and restores it into the
sandbox/restored file system and also creates a restfs@today snapshot on the
newsys system. This syntax assumes that the user has been configured to ssh on the
remote system.

76 ZFS Administration Guide • November 2005

CHAPTER 6

ZFS Snapshots and Clones

This chapter describes how to create and manage ZFS snapshots and clones.

The following sections are provided in this chapter.

� “6.1 ZFS Snapshots” on page 77
� “6.1.1 Creating and Destroying ZFS Snapshots” on page 78
� “6.1.2 Displaying and Accessing ZFS Snapshots” on page 79
� “6.1.3 Rolling Back to a Snapshot” on page 79
� “6.2 ZFS Clones” on page 80
� “6.2.1 Creating a Clone” on page 80
� “6.2.2 Destroying a Clone” on page 81

6.1 ZFS Snapshots
A snapshot is a read-only copy of a filesystem or volume. Snapshots can be created
almost instantly, and, initially, consume no additional space within the pool. However,
as data within the active dataset changes, the snapshot consumes space by continuing
to reference the old data and so prevents it from being freed.

ZFS snapshots include the following features:

� Persistence across system reboots.

� Theoretical maximum number of snapshots is 264.

� Use no separate backing store. They consume space directly from the same storage
pool as the file system from which they were created.

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up,
rolled back to, and so on. For information on backing up a ZFS snapshot, see “5.7
Backing Up and Restoring ZFS Data” on page 74.

77

6.1.1 Creating and Destroying ZFS Snapshots
Snapshots are created by using the zfs snapshot command, which takes as its only
argument the name of the snapshot to create. The snapshot name is specified as
follows:

filesystem@snapname
volume@snapname

The snapshot name must satisfy the naming conventions defined in “1.3 ZFS
Component Naming Conventions” on page 17.

The following example creates a snapshot of tank/home/ahrens that is named
friday.

zfs snapshot tank/home/ahrens@friday

Snapshots have no modifiable properties. Nor can dataset properties be applied to a
snapshot.

zfs set compression=on pool/home/ahrens@tuesday
cannot set compression property for ’pool/home/ahrens@tuesday’: snapshot
properties cannot be modified

Snapshots are destroyed by using the zfs destroy command.

zfs destroy tank/home/ahrens@friday

A dataset cannot be destroyed if snapshots of the dataset exists. For example:

zfs destroy pool/home/ahrens
cannot destroy ’pool/home/ahrens’: filesystem has children
use ’-r’ to destroy the following datasets:
pool/home/ahrens@tuesday
pool/home/ahrens@wednesday
pool/home/ahrens@thursday

In addition, if clones have been created from a snapshot, then they must be destroyed
before the snapshot can be destroyed.

For more information on the destroy subcommand, see “5.1.2 Destroying a
Filesystem” on page 52.

6.1.1.1 Renaming ZFS Snapshots
You can rename snapshots but they must be renamed within the pool and dataset
from which they were created.

zfs rename tank/home/cindys@111205 pool/home/cindys@today

The following snapshot rename operation is not supported.

zfs rename tank/home/cindys@111205 pool/home/cindys@saturday
cannot rename to ’pool/home/cindys@today’: snapshots must be part of same
dataset

78 ZFS Administration Guide • November 2005

6.1.2 Displaying and Accessing ZFS Snapshots
Snapshots of filesystems are accessible in the .zfs/snapshot directory within the
root of the containing filesystem. For example, if tank/home/ahrens is mounted on
/home/ahrens, then the tank/home/ahrens@friday snapshot data is accessible
in the /home/ahrens/.zfs/snapshot/friday directory.

ls /home/ahrens/.zfs/snapshot
tuesday wednesday thursday friday

Currently, the .zfs/snapshot/ directories can only be accessed locally or over
NFSv4. Accessing these directories over earlier NFS versions is not supported.

Snapshots can be listed as follows:

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
pool/home/ahrens@tuesday 13.3M - 2.13G -

6.1.2.1 Snapshot Space Accounting
When a snapshot is created, its space is initially shared between the snapshot and the
filesystem, and possibly with previous snapshots. As the filesystem changes, space
that was previously shared becomes unique to the snapshot, and thus is counted in
the snapshot’s used property. Additionally, deleting snapshots can increase the
amount of space unique to (and thus used by) other snapshots.

A snapshot’s space referenced property is the same as the filesystem’s was when
the snapshot was created.

6.1.3 Rolling Back to a Snapshot
The zfs rollback command can be used to discard all changes made since a
specific snapshot. The filesystem reverts to its state at the time the snapshot was taken.
By default, the command refuses to rollback to a snapshot other than the most recent
one. To rollback to an earlier snapshot, all intermediate snapshots must be destroyed.
You can destroy earlier snapshots by specifying the -r flag.

If there are clones of any intermediate snapshots, the -R flag must be specified to
destroy the clones as well.

Note – The filesystem must be unmounted and remounted, if it is currently mounted.
If the filesystem cannot be unmounted, the rollback fails. The -f flag forces the
filesystem to be unmounted, if necessary.

The following example rolls back the pool/home/ahrens filesystem to the tuesday
snapshot:

Chapter 6 • ZFS Snapshots and Clones 79

zfs rollback pool/home/ahrens@tuesday
cannot rollback to ’pool/home/ahrens@tuesday’: more recent snapshots exist
use ’-r’ to force deletion of the following snapshots:
pool/home/ahrens@wednesday
pool/home/ahrens@thursday
zfs rollback -r pool/home/ahrens@tuesday

6.2 ZFS Clones
A clone is a writable volume or filesystem whose initial contents are the same as
another dataset. As with snapshots, creating a clone is nearly instantaneous, and
initially consumes no additional space.

Clones can only be created from a snapshot. When a snapshot is cloned, it creates an
implicit dependency between the clone and snapshot. Even though the clone is created
somewhere else in the dataset hierarchy, the original snapshot cannot be destroyed as
long as the clone exists. The origin property exposes this dependency, and the zfs
destroy command lists any such dependencies, if they exist.

Clones do not inherit the properties of the dataset from which they are created. Rather,
clones inherit their properties based on where they are created in the pool hierarchy.
Use the zfs get and zfs set commands to view and change the properties of a
cloned dataset. For more information about setting ZFS dataset properties, see “5.4.1
Setting Properties” on page 63.

Since a clone initially shares all its space with the original snapshot, its space used
property is initially zero. As changes are made to the clone, it uses more space. The
space used property of the original snapshot does not take into account the space
consumed by the clone.

6.2.1 Creating a Clone
To create a clone use the zfs clone command, specifying the snapshot from which to
create it, and the name of the new filesystem or volume. The new filesystem or volume
can be located anywhere in the ZFS hierarchy. The type of the new dataset (for
example, filesystem or volume) is the same as the snapshot from which it was created.
The following example creates a new clone named pool/home/ahrens/bug123
with the same initial contents as the snapshot pool/ws/gate@yesterday.

zfs clone pool/ws/gate@yesterday pool/home/ahrens/bug123

The following example creates a cloned work space from the
projects/newproject@today snapshot for a temporary user as
projects/teamA/tempuser and then sets properties on the cloned work space.

80 ZFS Administration Guide • November 2005

zfs snapshot projects/newproject@today
zfs clone projects/newproject@today projects/teamA/tempuser
zfs set sharenfs=on projects/teamA/tempuser
zfs set quota=5G projects/teamA/tempuser

6.2.2 Destroying a Clone
ZFS clones are destroyed with the zfs destroy command.

zfs destroy pool/home/ahrens/bug123

Clones must be destroyed before the parent snapshot can be destroyed.

Chapter 6 • ZFS Snapshots and Clones 81

82 ZFS Administration Guide • November 2005

CHAPTER 7

Using ACLs to Protect ZFS Files

This chapter provides information about using access control lists (ACLs) to protect
your ZFS files by providing more granular permissions then the standard UNIX
permissions.

The following sections are provided in this chapter.

� “7.1 New Solaris ACL Model” on page 83
� “7.2 Using ACLs on ZFS Files” on page 89
� “7.3 Setting and Displaying ACLs on ZFS Files” on page 91

7.1 New Solaris ACL Model
Previous versions of Solaris supported an ACL implementation that was primarily
based on the POSIX ACL draft specification. The POSIX-draft based ACLs are used to
protect UFS files and are translated by earlier versions of NFS prior to NFSv4.

With the introduction of NFSv4, a new ACL model is needed to fully support the
interoperability that NFSv4 hopes to achieve between UNIX and non-UNIX clients.
The new ACL implementation, as defined in the NFSv4 specification, provide much
richer semantics that are based on NT-style ACLs.

The main differences of the new ACL model are as follows:

� Based on the NFSv4 specification and are similar to NT-style ACLs.

� Much more granular set of access privileges. For more information, see Table 7–2.

� Set and displayed with the chmod and ls commands rather than the setfacl and
getfacl commands.

� Richer inheritance semantics for designating how access privileges are applied
from directory to subdirectories, and so on. For more information, see “7.1.2 ACL
Inheritance” on page 87.

83

The goal of both ACL models is to provide more fine grained access control than is
available with the standard file permissions. Much like POSIX-draft ACLs, the new
ACLs are made up of multiple Access Control Entries (ACEs).

POSIX-draft style ACLs use a single entry to define what is allowed and also what is
denied for the user or group that the entry applies to. The new ACL model has two
types of ACEs that play a role in access checking: ALLOW and DENY. This means that
you can’t infer from any single ACE that defines some set of permissions whether or
not the permissions that weren’t defined in that ACE are allowed or denied.

Translation between NFSv4-style ACLs and POSIX-draft ACLs is as follows:

� If you use any ACL-aware utility, such as the cp, mv, tar, cpio, or rcp
commands, to transfer UFS files with ACLs to a ZFS file system, the POSIX-draft
ACLs are translated into the equivalent NFSv4-style ACLs.

� NFSv4-style ACLs are not translated to POSIX-draft ACLs. You will see a message
similar to the following:

cp -p filea /var/tmp
cp: failed to set acl entries on /var/tmp/filea

� If you attempt to set a NFSv4–style ACL on a UFS file, you will see a message
similar to the following:

chmod: ERROR: ACL type’s are different

� If you attempt to set a POSIX-style ACL on a ZFS file, you will see messages
similar to the following:

getfacl filea
File system doesn’t support aclent_t style ACL’s.
See acl(5) for more information on Solaris ACL support.

7.1.1 ACL Format Description
The basic ACL format is as follows:

Syntax A:

ACL-entry-type=owner@, group@, everyone@:access-permissions/.../:deny |
allow[:inheritance-flags]

Syntax B:

ACL-entry-type=user or group:ACL-entry-ID=username or
groupname:access-permissions/.../:deny | allow[:inheritance-flags]

ACL-entry-type=owner@, group@, everyone@
Identifies owner@, group@, or everyone@ as displayed in Syntax A. For a
description of ACL-entry-types, see Table 7–1.

84 ZFS Administration Guide • November 2005

ACL-entry-type=user or group:ACL-entry-ID=username or groupname
Identifies user or group as displayed in Syntax B. The user and group ACL-entry-type
must also contains the ACL-entry-ID: username or groupname. For a description of
ACL-entry-types, see Table 7–1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description of
ACL access permissions, see Table 7–2.

deny | allow
Identifies whether the access permissions are granted or denied.

inheritance-flags
Optional list of ACL inheritance flags. For a description of the ACL inheritance
flags, see Table 7–3.

For example:

group@:write_data/append_data/execute:deny

In the above example, the ACL-entry-ID value is not relevant. The following example
includes an ACL-entry-ID because a specific user (ACL-entry-type) is included in the
ACL.

0:user:gozer:list_directory/read_data/execute:allow

When an ACL entry is displayed, it looks similar to the following:

2:group@:write_data/append_data/execute:deny

The 2 or the <index-ID> designation in the above example, identifies the ACL entry in
the larger ACL, which might have multiple entries for owner, specific UIDs, group,
and everyone. You can identify the index-ID with the chmod command to identify
which part of the ACL you want to modify. For example, you can identify index ID 3
as A#3 to the chmod command, similar to the following:

chmod A3=user:venkman:read_acl:allow filename

ACL entry types, which are the ACL representations of owner, group, and other, are
described in the following table.

TABLE 7–1 ACL Entry Types

ACL Entry Types Description

owner@ Specifies the access granted to the owner of the object.

group@ Specifies the access granted to the owning group of the object.

everyone@ Specifies the access granted to any user or group that does not
match any other ACL entry.

Chapter 7 • Using ACLs to Protect ZFS Files 85

TABLE 7–1 ACL Entry Types (Continued)
ACL Entry Types Description

user With a user name, specifies the access granted to an additional
user of the object. Must include the ACL-entry-ID, which contains
a username or userID. If the username can’t be resolved to a UID,
then the entry is assumed to be a numeric UID.

group With a group name, specifies the access granted to an additional
group of the object. Must include the ACL-entry-ID, which
contains a groupname or groupID. If the groupname can’t be
resolved to a GID, then the entry is assumed to be a numeric GID.

Access privileges are described in the following table.

TABLE 7–2 ACL Access Privileges

Access Privilege Description

add_file Permission to add a new file to a directory.

add_subdirectory Permission to create a subdirectory in a directory.

append_data On a directory, permission to create a subdirectory.

On a file, permission to modify the contents of a file.

delete Permission to delete the file.

delete_child Permission to delete a file or directory within a directory.

execute Permission to execute a file.

list_directory Permission to list the contents of a directory.

read_acl Permission to read the ACL (ls).

read_attributes The ability to read basic attributes (non-ACLs) of a file. Basic
attributes can be thought of as the stat level attributes. Allowing
this access mask bit would mean the entity can execute ls(1) and
stat(2).

read_data Permission to read the contents of the file.

read_xattrs The ability to read the extended attributes of a file or do a lookup
in the file’s extended attributes directory.

synchronize Placeholder, unimplemented at this time.

86 ZFS Administration Guide • November 2005

TABLE 7–2 ACL Access Privileges (Continued)
Access Privilege Description

write_xattrs The ability to create extended attributes or write to the extended
attributes directory.

Granting this permission to a user means that the user will be
able to create an extended attribute directory for the file. The
attribute file’s permissions control the user’s access to the
attribute.

write_data Permission to modify or replace the contents of a file.

write_attributes Permission to change the times associated with a file or directory
to an arbitrary value.

write_acl Permission to write the ACL or the ability to modify the ACL
with chmod(1).

write_owner Permission to change the file’s owner or group. Or, the ability to
execute chown(1) or chgrp(1) on the file.

Permission to take ownership of a file or the ability to change the
group ownership of the file to a group of which the user is a
member. If you wish to change the file or group ownership to an
arbitrary user or group, then the PRIV_FILE_CHOWN privilege
is required.

7.1.2 ACL Inheritance
The purpose of using ACL inheritance is for a newly created file or directory to inherit
the ACLs they are intended to inherit, but without disregarding the existing
permission bits on the parent directory.

By default, ACLs are not propagated. If you set an explicit ACL on a directory it is not
inherited to any subsequent directory. You have to specify the inheritance of an ACL
on a file or directory.

The optional inheritance flags are described in the following table.

TABLE 7–3 ACL Inheritance Flags

Inheritance Flag Description

file_inherit Inherit the ACL from the parent directory to the directory’s files
only.

dir_inherit Inherit the ACL from the parent directory to the directory’s
subdirectories only.

Chapter 7 • Using ACLs to Protect ZFS Files 87

TABLE 7–3 ACL Inheritance Flags (Continued)
Inheritance Flag Description

inherit_only Inherit the ACL from the parent directory but only applies to
newly created files or subdirectories and not the directory itself.
This flag requires either the file_inherit and/or dir_inherit flags to
indicate what to inherit.

no_propagate Inherit the ACL from the parent directory to the first-level
contents of the directory only, not the second-level or subsequent
contents. This flag requires either the file_inherit and/or
dir_inherit flags to indicate what to inherit.

In addition, you can set a default ACL inheritance policy on the file system that is
strict or less strict by using the aclinherit file system property. For more
information, see the next section.

7.1.3 ACL Property Modes
The ZFS file system includes two properties related to ACLs:

� aclinherit – This property determines the behavior of ACL inheritance. Values
include the following:

� discard – For new objects, no ACL entries are inherited when a file or directory
is created. The ACL on the file or directory will be equal to the permission
mode of the file or directory.

� noallow – For new objects, only inheritable ACL entries that have an access type
of deny are inherited.

� secure – For new objects, the write_owner and write_acl permissions are
removed when an ACL entry is inherited.

� passthrough – For new objects, the inheritable ACL entries are inherited with no
changes made to the them. This mode, in effect, disables secure mode.

The default mode is secure.

� aclmode – This property modifies ACL behavior whenever a file or directory’s
mode is modified by the chmod command or when a file is initially created. Values
include the following:

� discard – All ACL entries are removed except for those needed to define the
mode of the file or directory.

� groupmask – User or group ACL permissions are reduced so that they are no
greater than the group permission bits unless it is a user entry that has the same
UID as the owner of the file or directory. Then, the ACL permissions are
reduced so that they are no greater than owner permission bits.

� passthrough – For new objects, the inheritable ACL entries are inherited with no
changes made to the them.

88 ZFS Administration Guide • November 2005

The default mode is groupmask.

7.2 Using ACLs on ZFS Files
As implemented with ZFS, ACLs are composed of an array of ACL entries. ZFS
provides a pure ACL model, where all files have an ACL. Typically, the ACL is trivial in
that it only represents the traditional UNIX owner/group/other entries.

ZFS files still have permission bits and a mode, but they are more of a cache of what
the ACL represents. This means that if you change the permissions of the file, the file’s
ACL is updated accordingly. In addition, if you remove an explicit ACL that granted a
user access to a file or directory, that user could still have access to the file or directory
because of the file or directory’s permission bits granting access to group or everyone.
All access control decisions are governed by the permissions represented in a file or
directory’s ACL.

The primary rules of ACL access on a ZFS file are as follows:

� Each ACL entry is processed in order by ZFS.

� Only ACL entries that have a “who” that matches the requester of the access are
processed.

� Each ACL entry is processed until all the bits of the access request have been
allowed.

� Once an allow permission has been granted, it cannot be denied by a subsequent
ACL deny entry in the same ACL permission set.

� The owner of the file is granted the write_acl permission unconditionally even if
it is explicitly denied. Otherwise, any permission left unspecified is denied.

In the cases of deny permissions or when an access permission is missing, the
privilege subsystem determines what access request is granted for the owner of the
file or for superuser. This mechanism prevents owners of files from getting locked
out of their files and enables superuser to modify files for recovery purposes.

If you set an explicit ACL on a directory, the ACL is not automatically inherited to the
directory’s children. If you set an explicit ACL and you want it inherited to the
directory’s children, you have to use the ACL inheritance flags. For more information,
see Table 7–3 and “7.3.1 Setting ACL Inheritance on ZFS Files” on page 96.

When a new file is created and depending on the umask value, a default trivial ACL is
applied, which is similar to the following:

% ls -v file.1
-rw-r--r-- 1 root root 2703 Nov 4 12:37 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

Chapter 7 • Using ACLs to Protect ZFS Files 89

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Note that in the above example, each user category (owner@, group@, everyone@) has
two ACL entries, which is one entry for deny permissions and one entry is for access
permissions.

A description of this file ACL is as follows:

0:owner@ Owner is denied execute permissions to the file (execute:deny).

1:owner@ Owner can read and modify the contents of the file
(read_data/write_data/
append_data) and modify the file’s attributes such as time
stamps, extended attributes, and ACLs
(write_xattr/write_attributes /write_acl). In addition,
the owner is granted the ability to modify the ownership of the file
(write_owner:allow)

2:group@ Group is denied modify and execute permissions to the file
(write_data/append_data/execute:deny).

3:group@ Group is granted read permissions to the file (read_data:allow).

4:everyone@ Everyone who is not user or group is denied permission to execute
or modify the contents of the file and to modify any attributes of
the file (write_data/append_data/write_xattr/execute/
write_attributes/write_acl/write_owner:deny).

5:everyone@ Everyone who is not user or group is granted read permissions to
the file and the file’s attributes
(read_data/read_xattr/read_attributes/read_acl/
synchronize:allow). The synchronize access permission is
not currently implemented.

When a new directory is created and depending on the umask value, a default
directory ACL is similar to the following:

$ ls -dv dir.1
drwxr-xr-x 2 root root 2 Nov 1 14:51 dir.1

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

90 ZFS Administration Guide • November 2005

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

A description of this directory ACL is as follows:

0:owner@ Owner deny list is empty for the directory (::deny).

1:owner@ Owner can read and modify the directory contents
(list_directory/read_data/add_file/write_data/
add_subdirectory/append_data), execute the file (execute),
and modify the file’s attributes such as time stamps, extended
attributes, and ACLs
(write_xattr/write_attributes/write_acl). In addition,
the owner is granted the ability to modify the ownership of the
directory (write_owner:allow).

2:group@ Group cannot add to or modify the directory contents
(add_file/write_data/add_subdirectory/append_data
:deny).

3:group@ Group can list and read the directory contents. In addition, group
has execute permission to the directory contents.
(list_directory/read_data/execute:allow).

4:everyone@ Everyone who is not user or group is denied permission to add to
or modify the contents of the directory
(add_file/write_data/add_subdirectory/append_data).
In addition, the permission to modify any attributes of the directory
is also denied. (write_xattr
/write_attributes/write_acl/write_owner:deny).

5:everyone@ Everyone who is not user or group is granted read and execute
permissions to the directory contents and the directory’s attributes
(list_directory/read_data/read_xattr/execute/read_
attributes/read_acl/synchronize:allow). The
synchronize access permission is not currently implemented.

7.3 Setting and Displaying ACLs on ZFS
Files
You can use the chmod command to modify ACLs on ZFS files. The following chmod
syntax for modifying ACLs uses acl-specification to identify the format of the ACL. For
a description of acl-specification, see “7.1.1 ACL Format Description” on page 84.

Chapter 7 • Using ACLs to Protect ZFS Files 91

� Adding ACL entries

� Adding an ACL entry by index-ID

% chmod Aindex-ID+acl-specification filename

This syntax inserts the new ACL entry at the specified index-ID location.

� Adding an ACL entry for a user

% chmod A+acl-specification filename

� Removing ACL entries

� Removing an ACL entry by index-ID

% chmod Aindex-ID- filename

� Removing an ACL entry by user

% chmod A-acl-specification filename

� Removing an ACL from a file

% chmod A- filename

� Replacing an ACL entry

% chmod Aindex-ID=acl-specification filename

% chmod A=acl-specification filename

Note the space between the # (pound sign) and the index-ID.

ACL information can be displayed with the ls -v command.

EXAMPLE 7–1 Modifying Trivial ACLs on ZFS Files

The following section provides examples of setting and displaying trivial ACLs.

For example, given the following ACL on file.1:

ls -v file.1
-rw-r--r-- 1 root root 2703 Nov 4 12:37 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Change the group@ permissions to read_data/write_data. For example:

chmod A3=group@:read_data/write_data:allow file.1
ls -v filea
-rw-r--r-- 1 root root 2703 Nov 4 12:37 file.1

0:owner@:execute:deny

92 ZFS Administration Guide • November 2005

EXAMPLE 7–1 Modifying Trivial ACLs on ZFS Files (Continued)

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes
/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny
3:group@:read_data/write_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Add read_data/execute permissions for the user gozer on the test.dir
directory. For example:

chmod A+user:gozer:read_data/execute:allow test.dir
ls -dv test.dir
drwxr-xr-x+ 2 root root 2 Nov 4 11:10 test.dir

0:user:gozer:list_directory/read_data/execute:allow
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Remove read_data/execute permissions for user gozer. For example:

chmod A0- test.dir
ls -dv test.dir
drwxr-xr-x 2 root root 2 Nov 4 11:10 test.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–2 ACL Interaction With Permissions on ZFS Files

The following ACL scenarios illustrate the interaction between setting explicit ACLs
and then changing the file or directory’s permission bits.

Given the following ACL on file.2:

Chapter 7 • Using ACLs to Protect ZFS Files 93

EXAMPLE 7–2 ACL Interaction With Permissions on ZFS Files (Continued)

ls -v file.2
-rw-r--r-- 1 root root 206663 Nov 4 12:41 file.2

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Remove ACL allow permissions from everyone@. For example:

chmod A5- file.2
ls -v file.2
-rw-r----- 1 root root 206663 Nov 4 12:41 file.2

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

In the above output, the file’s permission bits are reset from 655 to 650. You have
effectively removed read permissions for other from the file’s permissions bits when
you removed the ACL allow permissions for everyone@.

Replace the existing ACL with read_data/write_data permissions for everyone@.
For example:

chmod A=everyone@:read_data/write_data:allow file.23
ls -v file.3
-rw-rw-rw-+ 1 root root 2703 Nov 4 14:52 file.3

0:everyone@:read_data/write_data:allow

In the above example, the chmod syntax effectively replaces the existing ACL with
read_data/write_data:allow permissions to read/write permissions for owner,
group, and other. In this model, everyone@ specifies access to any user or group. Since
we do not have an owner@ or group@ ACL entry to override the permissions for
owner and group, the permission bits are set to 666.

Replace the existing ACL with read permissions for user gozer. For example:

chmod A=user:gozer:read_data:allow file.3
ls -v file.3
----------+ 1 root root 2703 Nov 4 14:55 file.3

0:user:gozer:read_data:allow

94 ZFS Administration Guide • November 2005

EXAMPLE 7–2 ACL Interaction With Permissions on ZFS Files (Continued)

Using the above syntax, the file permissions are computed to be 000 because no ACL
entries exist for owner@, group@ or everyone@, which represent the traditional
permission components of a file. As the owner of the file, you can resolve this by
resetting the permissions (and the ACL) as follows:

chmod 655 file.3
ls -v file.3
-rw-r-xr-x+ 1 root root 2703 Nov 4 14:55 file.3

0:user:gozer::deny
1:user:gozer:read_data:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data:deny
5:group@:read_data/execute:allow
6:everyone@:write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

EXAMPLE 7–3 Removing Explicit ACLs on ZFS Files

You can use the chmod command to remove all explicit ACLs on a file or directory. For
example, given the following ACL:

ls -dv test5.dir
drwxr-xr-x+ 2 root root 2 Nov 4 14:22 test5.dir

0:user:gozer:read_data:deny:file_inherit
1:user:lp:read_data:allow:file_inherit
2:owner@::deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny
5:group@:list_directory/read_data/execute:allow
6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Remove the explicit ACLs for users gozer and lp. The remaining ACL contains the
default 6 values for owner@, group@, and everyone@.

chmod A- test5.dir
ls -dv test5.dir
drwxr-xr-x+ 2 root root 2 Nov 4 14:22 test5.dir

2:owner@::deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny

Chapter 7 • Using ACLs to Protect ZFS Files 95

EXAMPLE 7–3 Removing Explicit ACLs on ZFS Files (Continued)

5:group@:list_directory/read_data/execute:allow
6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

7.3.1 Setting ACL Inheritance on ZFS Files
By default, ACLs are not propagated through a directory structure. For example, an
explicit ACL of read_data/write_data/execute is applied for user gozer on
test.dir.

chmod A+user:gozer:read_data/write_data/execute:allow test.dir
ls -dv test.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:39 test.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If a test.dir subdirectory is created, the ACE for user gozer is not propagated. User
gozer would only have access to sub.dir if the permissions on sub.dir granted
him access as the file owner, group member, or other.

mkdir test.dir/sub.dir
ls -dv test.dir/sub.dir
drwxr-xr-x 2 root root 2 Nov 4 14:30 test.dir/sub.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directory ACEs applied when
the file_inherit flag is set.

96 ZFS Administration Guide • November 2005

Add read_data/write_data permissions for files in the test.dir directory for
user gozer so that he has read access on any newly created files. For example:

chmod A+user:gozer:read_data/write_data:allow:file_inherit test2.dir
ls -dv test2.dir
drwxr-xr-x+ 2 root root 2 Nov 4 14:33 test2.dir

0:user:gozer:read_data/write_data:allow:file_inherit
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Identify user gozer’s permissions on the newly created test2.dir/file.2 file. The
ACL inheritance granted, read_data:allow:file_inherit, means user gozer can
read the contents of any newly created file.

touch test2.dir/file.2
ls -v test2.dir/file.2
-rw-r--r--+ 1 root root 0 Nov 4 14:33 test2.dir/file.2

0:user:gozer:write_data:deny
1:user:gozer:read_data/write_data:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data/execute:deny
5:group@:read_data:allow
6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Note that because the aclmode for this file is set to the default mode, groupmask,
user gozer does not have write_data permission on file.2 because the group
permission of the file does not allow it.

Note the inherit_only permission, which is applied when the file_inherit or
dir_inherit flags are set, are used to propagate the ACL through the directory
structure. This means user gozer is only granted/denied permission from the
everyone@ permissions unless he is the owner of the file or a member of the owning
group of the file. For example:

mkdir test2.dir/subdir.2
ls -dv test2.dir/subdir.2
drwxr-xr-x+ 2 root root 2 Nov 4 15:00 test2.dir/subdir.2

0:user:gozer:read_data/write_data:allow:file_inherit/inherit_only
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

Chapter 7 • Using ACLs to Protect ZFS Files 97

/write_owner:allow
3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directory ACLs applied when
both the file_inherit and dir_inherit flags are set.

In the following example, user gozer is granted read, write, and execute permissions
that are inherited for newly created files and directories.

chmod A+user:gozer:read_data/write_data/execute:allow:file_inherit/
dir_inherit test3.dir
ls -dv test3.dir
drwxr-xr-x+ 2 root root 2 Nov 4 15:01 test3.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow
:file_inherit/dir_inherit

1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

touch test3.dir/file.3
ls -v test3.dir/file.3
-rw-r--r--+ 1 root root 0 Nov 4 15:01 test3.dir/file.3

0:user:gozer:write_data/execute:deny
1:user:gozer:read_data/write_data/execute:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data/execute:deny
5:group@:read_data:allow
6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the above examples, since the permission bits of the parent directory for group and
other deny write and execute permissions, user gozer is denied write and execute
permissions. The default aclmode property is secure, which means write_owner
and write_acl permissions are not inherited.

In the following example, user gozer is granted read, write, and execute permissions
that are inherited for newly created files, but are not propagated to subsequent
contents of the directory.

98 ZFS Administration Guide • November 2005

chmod A+user:gozer:read_data/write_data/execute:allow:file_inherit/
no_propagate test4.dir
ls -dv test4.dir
drwxr-xr-x+ 2 root root 2 Nov 4 15:04 test4.dir

0:user:gozer:read_data/write_data/execute:allow:file_inherit/no_propagate
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

When a new subdirectory is created, user gozer’s
read_data/write_data/execute permission for files are not propagated to the
new sub4.dir directory.

mkdir test4.dir/sub4.dir
ls -dv test4.dir/sub4.dir
drwxr-xr-x+ 2 root root 2 Nov 4 15:06 test4.dir/sub4.dir

0:user:gozer:add_file/write_data:deny
1:user:gozer:list_directory/read_data/add_file/write_data/execute:allow
2:owner@::deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny
5:group@:list_directory/read_data/execute:allow
6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–4 ACL Inheritance With ACL Mode Set to Passthrough

If the aclmode property on this file system is set to passthrough, then user gozer
would inherit the ACL applied on test4.dir above for the newly created file.4 as
follows:

zfs set aclmode=passthrough tank/cindy
touch test4.dir/file.4
ls -v test4.dir/file.4
-rw-r--r--+ 1 root root 0 Nov 4 15:09 test4.dir/file.4

0:user:gozer:read_data/write_data/execute:allow
1:owner@:execute:deny
2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
3:group@:write_data/append_data/execute:deny
4:group@:read_data:allow
5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

Chapter 7 • Using ACLs to Protect ZFS Files 99

EXAMPLE 7–4 ACL Inheritance With ACL Mode Set to Passthrough (Continued)

/write_acl/write_owner:deny
6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

The above output illustrates that the
read_data/write_data/execute:allow:file_inherit/dir_inherit ACL
that was set on the parent directory, test4.dir, is passed through to user gozer.

EXAMPLE 7–5 ACL Inheritance With ACL Mode Set to Discard

If the aclmode property on a file system is set to discard, then ACLs can be
potentially discarded when the permission bits on a directory change. For example:

zfs set aclmode=discard tank/cindy
chmod A+user:gozer:read_data/write_data/execute:allow:dir_inherit test5.dir
ls -dv test5.dir
drwxr-xr-x+ 2 root root 2 Nov 4 15:10 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow
:dir_inherit

1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If, at a later time, you decide to tighten the permission bits on a directory, the explicit
ACL is discarded. For example:

chmod 744 test5.dir
ls -dv test5.dir
drwxr--r-- 2 root root 2 Nov 4 15:10 test5.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data/execute:deny
3:group@:list_directory/read_data:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/execute/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

100 ZFS Administration Guide • November 2005

EXAMPLE 7–6 ACL Inheritance With ACL Inherit Mode Set to Noallow

In the following example, two explicit ACLs with file inheritance are set: one allows
read_data permission and one denies read_data permission.

zfs set aclinherit=noallow tank/cindy
chmod A+user:gozer:read_data:deny:file_inherit test6.dir
chmod A+user:lp:read_data:allow:file_inherit test6.dir
ls -dv test6.dir
drwxr-xr-x+ 2 root root 2 Nov 4 15:13 test6.dir

0:user:lp:read_data:allow:file_inherit
1:user:gozer:read_data:deny:file_inherit
2:owner@::deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny
5:group@:list_directory/read_data/execute:allow
6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

When a new file is created, the ACL that allows read_data permission is discarded.

touch test6.dir/file.6
ls -v test6.dir/file.6
-rw-r--r-- 1 root root 0 Nov 4 15:14 test6.dir/file.6

0:user:gozer:read_data:deny
0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Chapter 7 • Using ACLs to Protect ZFS Files 101

102 ZFS Administration Guide • November 2005

CHAPTER 8

Advanced Topics

This chapter describes emulated volumes, using ZFS on a Solaris system with zones
installed, and alternate root pools.

The following sections are provided in this chapter.

� “8.1 Emulated Volumes” on page 103
� “8.2 Using ZFS on a Solaris System With Zones Installed” on page 104
� “8.3 ZFS Alternate Root Pools” on page 108
� “8.4 ZFS Rights Profiles” on page 109

8.1 Emulated Volumes
An emulated volume is a dataset that represents a block device and can be used like any
block device. ZFS volumes are identified as devices in the
/dev/zvol/{dsk,rdsk}/path directory.

The following syntax creates a 5-Gbyte ZFS volume, tank/vol:

zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the
volume. The reservation size continues to equal the size of the volume so that
unexpected behavior doesn’t occur. For example, if the size of volume shrinks, data
corruption might occur. This means you should be careful when changing the size of
the volume.

If you are using a Solaris system with zones installed, you cannot create or clone a ZFS
volume in a non-global zone. Any attempt to create or clone a volume from within a
non-global zone fail. For information about using ZFS volumes in a global zone, see
“8.2.3 Adding ZFS Volumes to a Non-Global Zone” on page 106.

103

8.1.1 Emulated Volumes as Swap or Dump Devices
To set up a swap area, create a ZFS volume of a specific size and then enable swap on
that device. Do not swap to a file on a ZFS file system. A ZFS swap file configuration is
not supported.

The following syntax adds the 5-Gbyte tank/vol volume as a swap device.

swap -a /dev/zvol/dsk/tank/vol
swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 32,33 16 1048688 1048688
/dev/zvol/dsk/tank/vol 254,1 16 10485744 10485744

Using a ZFS volume as a dump device is currently unsupported. Use the dumpadm
command to setup a dump device as you would with a UFS file system.

8.2 Using ZFS on a Solaris System With
Zones Installed
ZFS datasets can be added to a zone either as a generic filesystem, or as a delegated
dataset.

Adding a filesystem allows the non-global zone to share space with the global zone,
though the zone administrator cannot control properties on the underlying dataset or
create new filesystems within the dataset. This is identical to adding any other type of
filesystem to a zone, and should be used when the primary purpose is solely to share
common space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control
over the dataset and all its children to the zone administrator. The zone administrator
can create and destroy filesystems within that dataset, and modify properties of the
datasets. The zone administrator cannot affect datasets not added to the zone, and
cannot exceed any top level quotas set on the exported dataset.

8.2.1 Adding File Systems to a Non-Global Zone
ZFS datasets should be added as generic file systems when the goal is solely to share
space with the global zone. You can export a ZFS file system to a non-global zone by
using the add fs command in zonecfg(1M):

As the global administrator in the global zone:

zonecfg -z zion
zion: No such zone configured

104 ZFS Administration Guide • November 2005

Use ’create’ to begin configuring a new zone.
zonecfg:zion> create
zonecfg:zion> add fs
zonecfg:zion:fs> set type=zfs
zonecfg:zion:fs> set special=tank/zone/zion
zonecfg:zion:fs> set dir=/export/shared
zonecfg:zion:fs> end

This syntax adds the ZFS filesystem tank/zone/zion to the zone zion, mounted at
/export/shared. The mountpoint property of the dataset must be set to legacy,
and the filesystem cannot already be mounted in another location. The zone
administrator can create and destroy files within the filesystem. The filesystem cannot
be re-mounted in a different location, nor can the administrator change properties on
the filesystem such as atime, readonly, compression, etc. The filesystem appears in the
/etc/mnttab file, and is present nor visible in zfs(1M) output. The global zone
administrator is responsible for setting and controlling properties of the dataset.

For more information about the zonecfg command and about configuring resource
types with zonecfg, see System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

8.2.2 Delegating Datasets to a Non-Global Zone
If the primary goal is to delegate administration of storage to a zone, then ZFS
supports adding datasets to a non-global zone through use of the add dataset
command in zonecfg(1M):

As the global administrator in the global zone:

zonecfg -z zion
zion: No such zone configured
Use ’create’ to begin configuring a new zone.
zonecfg:zion> create
zonecfg:zion> add dataset
zonecfg:zion:dataset> set name=tank/zone/zion
zonecfg:zion:dataset> end

Unlike adding a filesystem, this syntax causes the ZFS dataset tank/zone/zion to
be visible within the zone zion. The zone administrator is able to set properties on the
dataset, as well as create children. It allows the zone administrator to take snapshots,
create clones, and otherwise control the entire namespace below the added dataset.

For more information on what actions are allowed, see “8.2.5 Property Management
Within a Zone” on page 106.

Chapter 8 • Advanced Topics 105

8.2.3 Adding ZFS Volumes to a Non-Global Zone
Emulated volumes cannot be added to a zone using zonecfg’s add dataset
subcommand. If an attempt to add an emulated volume is detected, the zone refuses
to boot. However, volumes can be added to a zone by using zonecfg’s add dataset
subcommand. For example:

As the global administrator in the global zone:

zonecfg -z zion
zion: No such zone configured
Use ’create’ to begin configuring a new zone.
zonecfg:zion> create
zonecfg:zion> add device
zonecfg:zion:device> set match=/dev/zvol/dsk/tank/vol
zonecfg:zion:device> end

This syntax exports the tank/vol emulated volume to the zone. Note that adding a
raw volume to a zone has implicit security risks, even if the volume doesn’t
correspond to a physical device. In particular, the zone administrator could create
malformed filesystems that would panic the system when a mount was attempted. For
more information on adding devices to zones and the related security risks, see “8.2.6
Understanding the zoned Property” on page 107.

For more information about adding devices to zones, see System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones.

8.2.4 Using ZFS Storage Pools Within a Zone
ZFS storage pools cannot be created or modified within a zone. The delegated
administration model centralizes control of physical storage devices within the global
zone, and control of virtual storage to non-global zones. While a pool-level dataset can
be added to a zone, any command that modifies the physical characteristics of the
pool, such as creation, deletion, adding or removing devices, is not allowed from
within a zone. Even if physical devices are added to a zone via zonecfg’s add
device subcommand, or if files are used, the zpool(1M) command does not allow the
creation of any new pools within the zone.

8.2.5 Property Management Within a Zone
Once a dataset is added to a zone, it allows a certain level of control for the zone
administrator. When a dataset is added to a zone, all its ancestors are visible as
read-only datasets, while the dataset itself is writable as are all its children. For
example, if we had the following configuration:

global# zfs list -Ho name
tank
tank/home

106 ZFS Administration Guide • November 2005

tank/data
tank/data/matrix
tank/data/zion
tank/data/zion/home

If we added tank/data/zion to a zone, each dataset would have the following
properties:

Dataset Visible Writable Immutable Properties

tank yes no -

tank/home no - -

tank/data yes no -

tank/data/matrix no - -

tank/data/zion yes yes sharenfs, zoned,
quota, reservation

tank/data/zion/home yes yes sharenfs, zoned

Note that every parent of tank/zone/zion is visible read-only, all children are
writable, and those not part of the parent hierarchy are not visible at all. The zone
administrator cannot change the sharenfs property, because non-global zones
cannot act as NFS servers. Neither can the administrator change the zoned property,
because it would expose a security risk as described in the next section.

Any other property can be changed, except for the added dataset itself, where the
quota and reservation properties cannot be changed. This allows the global zone
administrator to control the space consumption of all datasets used by the non-global
zone.

In addition, the sharenfs and mountpoint properties cannot be changed by the
global zone administrator once a dataset has been added to a non-global zone.

8.2.6 Understanding the zoned Property
When a dataset is added to a non-global zone, it must be specially marked so that
certain properties are not interpreted within the context of the global zone. Once a
dataset has been added to a non-global zone under the control of a zone administrator,
its contents can no longer be trusted. As with any filesystem, there may be setuid
binaries, symbolic links, or otherwise questionable contents that may adverse affect
the security of the global zone. In addition, the mountpoint property cannot be
interpreted in the context of the global zone, or else the zone administrator could affect
the global zone’s namespace. To address the latter, ZFS uses the zoned property to
indicate that a dataset has been delegated to a non-global zone at one point in time.

Chapter 8 • Advanced Topics 107

The zoned property is a boolean value that is automatically turned on when a zone
containing a ZFS dataset is first booted. An administrator should never need to
manually turn this property on. If the zoned property is set, the dataset cannot be
mounted or shared in the global zone, and is ignored when the zfs share -a
command or the zfs mount -a command is executed. In the following example,
tank/zone/zion has been added to a zone, while tank/zone/global has not:

zfs list -o name,zoned,mountpoint -r tank/zone
NAME ZONED MOUNTPOINT
tank/zone/global off /tank/zone/global
tank/zone/zion on /tank/zone/zion
zfs mount
tank/zone/global /tank/zone/global
tank/zone/zion /export/zone/zion/root/tank/zone/zion

Note the difference between the mountpoint property and the directory where the
tank/zone/zion dataset is currently mounted. The mountpoint property reflects
the property as stored on disk, not where it is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is
not automatically cleared. This is due to the inherent security risks associated with this
tasks. Since an untrusted user has had complete access to the dataset and its children,
the mountpoint property may be set to bad values, or setuid binaries may exist on
the filesystems.

In order to prevent accidental security risks, the zoned property must be manually
cleared by the administrator if you want to reuse the dataset in any way. Before setting
the zoned property to off, you should make sure that the mountpoint property for
the dataset and all its children are set to reasonable values, and that no setuid binaries
exist or turn the setuid property off.

Once you have verified that there are no security vulnerabilities left, the zoned
property can be turned off with the zfs set or zfs inherit commands. If the
zoned property is turned off while a dataset is in use within a zone, the system might
behave in unpredictable ways — only change the property if you are sure the dataset
is no longer in use by a non-global zone.

8.3 ZFS Alternate Root Pools
When creating pools, the pool is intrinsically tied to the host system. The host system
keeps knowledge about the pool, so that it can detect when the pool is otherwise
unavailable. While useful for normal operation, this can prove a hindrance when
booting from alternate media, or creating a pool on removable media. To solve this
problem, ZFS has the notion of an ’alternate root’ pool. An alternate root pool does not
persist across system reboots, and all mountpoints are modified to be relative to the
root of the pool.

108 ZFS Administration Guide • November 2005

8.3.1 Creating ZFS Alternate Root Pools
The most common use for creating an alternate root pool is for use on removable
media. In these circumstances, the user typically wants a single filesystem, and they
want it to be mounted wherever they choose on the target system. When an alternate
root pool is created using the -R option, the mount point of the root filesystem
automatically is set to /,, which is the equivalent of the alternate root itself.

zpool create -R /mnt morpheus c0t0d0
zfs list morpheus
NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt/morpheus

Note that there is a single filesystem (morpheus) whose mount point is the alternate
root of the pool, /mnt. It is important to note that the mount point as stored on disk is
really /, and that the full path to /mnt is interpreted only by nature of the alternate
root. This filesystem can then be exported and imported using under an arbitrary
alternate root on a different system.

8.3.2 Importing Alternate Root Pools
Pools can also be imported using an alternate root. This allows for recovery situations,
where the mount points should not be interpreted in context of the current root, but
under some temporary directory where repairs can be performed. This also can be
used when mounting removable media as described above. The usage is similar to the
create case:

zpool import -R /mnt morpheus
zpool list morpheus
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
morpheus 33.8G 68.0K 33.7G 0% ONLINE /mnt
zfs list morpheus
NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt/morpheus

8.4 ZFS Rights Profiles
If you want to perform ZFS management tasks without using the superuser (root)
account, you will need to assume a role with either of the following profiles to
perform ZFS administration tasks:

� ZFS Storage Management - Ability to create, destroy, and manipulate devices
within a ZFS storage pool

� ZFS Filesystem Management - Ability to create, destroy, and modify ZFS
filesystems

Chapter 8 • Advanced Topics 109

For more information about creating or assigning roles, see System Administration
Guide: Security Services.

110 ZFS Administration Guide • November 2005

CHAPTER 9

Troubleshooting and Data Recovery

This chapter describes how to identify ZFS failure modes and how to recover from
them. Steps for preventing failures are covered as well.

The following sections are provided in this chapter.

� “9.1 ZFS Failure Modes” on page 111
� “9.2 Checking Data Integrity” on page 113
� “9.3 Identifying Problems” on page 116
� “9.4 Damaged Configuration” on page 119
� “9.5 Repairing a Missing Device” on page 120
� “9.6 Repairing a Damaged Device” on page 121
� “9.7 Repairing Damaged Data” on page 126
� “9.8 Repairing an Unbootable System” on page 129

9.1 ZFS Failure Modes
As a combined file system and volume manager, there are many different failure
modes that ZFS can exhibit. Before going into detail about how to identify and repair
specific problems, it is important to describe some of the failure modes and how they
manifest themselves under normal operation. This chapter will begin by outlining the
various failure modes, then discuss how to identify them on a running system, and
finally how to repair the problems. There are three basic types of errors. It is important
to note that a single pool can be suffering from all three errors, so a complete repair
procedure will involve finding and correcting one error, proceeding to the next, etc.

111

9.1.1 Missing Devices
If a device is completely removed from the system, ZFS detects that it cannot be
opened and places the device in the FAULTED state. Depending on the data replication
level of the pool, this may or may not result in the entire pool becoming unavailable. If
one disk out of a mirror or RAID-Z device is removed, the pool will continue to be
accessible. If all components of a mirror are removed, more than one device in a
RAID-Z device is removed, or a single-disk, top-level device is removed, the pool will
become FAULTED, and no data will be accessible until the device is re-attached.

9.1.2 Damaged Devices
The term ’damaged’ covers a wide variety of possible errors. Examples include
transient I/O errors due to a bad disk or controller, on-disk data corruption due to
cosmic rays, driver bugs resulting in data being transferred to/from the wrong
location, or simply another user overwriting portions of the physical device by
accident. In some cases these errors are transient, such as a random I/O error while
the controller was having problems. In other cases the damage is permanent, such as
on-disk corruption. Even still, whether or not the damage is permanent does not
necessarily indicate that the error is likely to occur again. For example, if an
administrator accidentally overwrote part of a disk, it does not indicate any type of
hardware failure has occurred, and the device should not be replaced. Identifying
exactly what went wrong with a device is not an easy task, and is covered in more
detail in a later section.

9.1.3 Corrupted Data
Data corruption occurs when one or more device errors (missing or damaged devices)
affects a top level virtual device. For example, one half of a mirror can experience
thousands of device errors without ever causing data corruption. If an error is
encountered on the other side of the mirror in the exact same location, it will result in
corrupted data. Data corruption is always permanent, and requires special
consideration when repairing. Even if the underlying devices are repaired or replaced,
the original data is lost forever. Most often this will require restoring data from
backups. Data errors are recorded as they are encountered, and can be controlled
through regular disk scrubbing, explained below. When a corrupted block is removed,
the next scrubbing pass will notice that the corruption is no longer present and
remove any trace of the error from the system.

112 ZFS Administration Guide • November 2005

9.2 Checking Data Integrity
There is no fsck(1M) equivalent for ZFS. This utility has traditionally served two
purposes:

9.2.1 Data Repair
With traditional filesystems, the way in which data is written is inherently vulnerable
to unexpected failure causing data inconsistencies. Since the filesystem is not
transactional, it is possible to have unreferenced blocks, bad link counts, or other
inconsistent data structures. The addition of journalling does solve some of these
problems, but can introduce additional problems when the log cannot be rolled. With
ZFS, none of these problems exist. The only way for there to be inconsistent data on
disk is through hardware failure (in which case the pool should have been replicated),
or a bug in the ZFS software. Given that fsck(1M) is designed to repair known
pathologies specific to individual filesystems, it is not possible to write such a utility
for a filesystem with no known pathologies. Future experience may prove that certain
data corruption problems are common enough and simple enough such that a repair
utility can be developed, but these problems can always be avoided by using
replicated pools.

If your pool is not replicated, there is always the chance that data corruption can
render some or all of your data inaccessible.

9.2.2 Data Validation
The other purpose that fsck(1M) serves is to validate that there are no problems with
the data on disk. Traditionally, this is done by unmounting the filesystem and running
the fsck(1M) utility, possibly bringing the system down to single user mode in the
process. This results in downtime that is proportional to the size of the filesystem
being checked. Instead of requiring an explicit utility to do the necessary checking,
ZFS provides a mechanism to do regular checking of all data in the background, while
the filesystem is in use. This functionality, known as scrubbing, is commonly used in
memory and other systems as a method of detecting and preventing errors before it
results in hardware or software failure.

9.2.3 Controlling Data Scrubbing
Whenever ZFS encounters an error, either through scrubbing or when accessing a file
on demand, the error is logged internally so that the administrator can get a quick
overview of all known errors within the pool. By default, no background scrubbing is

Chapter 9 • Troubleshooting and Data Recovery 113

done due to the increased I/O load that may negatively impact performance. Only
those errors encountered during normal operation are recorded. But ZFS does allow
the administrator to control background scrubbing such that additional errors can be
detected and either automatically repaired or reported in the error logs.

9.2.3.1 Explicit Scrubbing
The simples way to perform a check of your data integrity is to initiate an explicit
scrub of all data within the pool. This will traverse all the data in the pool exactly once
and verify that all blocks can be read. It will proceed as fast as the devices allow,
though the priority of any I/O will remain below that of normal operations. This may
negatively impact performance, though the filesystem should remain usable and
nearly as responsive while the scrub is happening. To kick off an explicit scrub, use the
zpool scrub command:

zpool scrub tank

The status of the current scrub can be seen in zpool status output:

zpool status -v
pool: tank
state: ONLINE
scrub: scrub completed with 0 errors on Tue Nov 15 14:31:51 2005
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

Note that there can only be one active scrubbing operation per pool. If you initiate an
explicit scrub while a background scrub (explained next) is in progress, it will bump
the priority of the existing scrubbing operation to complete as soon as possible.

For more information on interpreting zpool status output, see “4.6 Querying Pool
Status” on page 39.

9.2.3.2 Background Scrubbing
In addition to administrator-requested scrubbing operations, ZFS also supports the
ability to perform regular data scrubbing as a background operation. This
accomplishes two basic tasks:

1. It automatically initiates any self-healing process for any corrupted data in the
pool. This will pro-actively prevent any such errors from propagating further, by
reducing the time window in which a parallel error could occur on another device.
It will catch cases of bit rot and driver bugs that are not detected when the data is
written.

114 ZFS Administration Guide • November 2005

2. It allows the administrator to instantly know all corrupted data in a pool without
having to schedule an explicit scrub, which takes up I/O bandwidth and requires
the administrator to wait for it to complete.

To enable background scrubbing, use the zpool set command:

zpool set scrub=2w

The parameter is a time duration indicating how often a complete scrub should be
performed. In this case, the administrator is requesting that the pool be scrubbed once
every two weeks. ZFS automatically tries to schedule I/O to even distribute the work
over the two week period, decreasing the performance impact an explicit scrub would
have on the system.

Determining an appropriate scrub interval can be difficult and requires evaluation of
I/O bandwidth and data integrity requirements. A good first estimate is probably once
a month. Abnormal data corruption, while it occurs often enough to be dealt with,
should not be a common phenomenon unless multiple devices in the pool are
experience hardware failures. A relatively low priority scrub across a long period of
time is probably sufficient to catch errors in a reasonably sized pool.

You can view the effectiveness of any background scrubbing through the use of the
zpool status command. This commands show the time taken to do the last scrub.

zpool status tank
pool: tank
state: ONLINE
scrub: scrub completed with 0 errors on Tue Nov 15 14:31:51 2005
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

Performing regular scrubbing also guarantees continuous I/O to all disks on the
system. Regular scrubbing has the side effect of preventing power management from
placing idle disks in low-power mode. If the system is generally performing I/O all
the time, or if power consumption is not a concern, then this can safely be ignored. If
the system is largely idle, and you want to conserve power to the disks, you should
consider a cron(1M) scheduled explicit scrub rather than background scrubbing. This
will still perform complete scrubs of data, though it will only generate a large amount
of I/O until the scrubbing is finished, at which point the disks can be power managed
as normal. The downside (besides increased I/O) is that there will be large periods of
time when no scrubbing is being done at all, potentially increasing the risk of
corruption during those periods.

For more information on setting scrubbing intervals, see “9.2.3.2 Background
Scrubbing” on page 114.

Chapter 9 • Troubleshooting and Data Recovery 115

9.2.3.3 Scrubbing and Resilvering
When a device is replaced, it initiates a resilvering operation to move data from the
good copies to the new device. This is a form of disk scrubbing, and therefore only one
such action can happen at a given time in the pool. If a scrubbing operation (either
explicit or background) is in progress, a resilvering operation will suspend the current
scrub, and start again after the resilvering is complete.

9.3 Identifying Problems
All ZFS troubleshooting is centered around the zpool status command. This
command analyzes the various failures seen in the system and identify the most
severe problem, presenting the user with a suggested action and a link to a knowledge
article for more information. It is important to note that the command only identifies a
single problem with the pool, though multiple problems can exist. For example, data
corruption errors always imply that one of the devices has failed. Replacing the failed
device will not fix the corruption problems.

This chapter describes how to interpret zpool status output in order to diagnose
the type of failure and direct the user to one of the following sections on how to repair
the problem. While most of the work is done automatically by the command, it is
important to understand exactly what problems are being identified in order to
diagnose the type of failure.

9.3.1 Determining if Problems Exist
The easiest way to determine if there are any known problems on the system is to use
the zpool status -x command. This command only describes pools exhibiting
problems. If there are no bad pools on the system, then the command displays a
simple message:

zpool status -x
all pools are healthy

Without the -x flag, the command displays complete status for all pools (or the
requested pool if specified on the command line), even if the pools are otherwise
healthy.

For more information on command line options to the zpool status command, see
“4.6 Querying Pool Status” on page 39.

9.3.2 Understanding zpool status Output
A complete zpool status output looks similar to the following:

116 ZFS Administration Guide • November 2005

zpool status tank
pool: tank
state: ONLINE
reason: Data corruption detected.
action: Remove corrupted data or restore from backup.

see: http://www.sun.com/msg/ZFS-XXXX-09
config:

NAME STATE READ WRITE CKSUM
test ONLINE 0 0 0
mirror ONLINE 0 0 0
c0t0d2 ONLINE 0 0 0
c0t0d1 ONLINE 0 0 0

scrub: ...
errors: 4 errors detected. Use ’-v’ for a complete list.

This output is divided into 4 basic sections:

9.3.2.1 Overall Status Information
This header section contains the following fields, some of which are only displayed for
pools exhibiting problems:

pool The name of the pool

state The current health of the pool. This refers only to the ability of the pool to
provide the necessarily replication level. Pools which are ONLINE may still
have failing devices or data corruption present.

reason A human readable description of what is wrong with this pool. This field is
omitted if there are no problems.

action A recommended action for repairing the errors. This is an abbreviated form
directing the user to one of the following sections. This field is omitted if no
problems are found.

see A reference to a knowledge article containing detailed repair information.
This online article is updated more often than this guide can be updated,
and should always be referenced for the for the most up to date repair
procedures. This field is omitted if no problems are found.

9.3.2.2 Configuration Information
The config field describes the configuration layout of the devices comprising the
pool, as well as their state and any errors seen from the devices. The state can be one
of ONLINE, FAULTED, DEGRADED, or OFFLINE. If it is anything but ONLINE, it
indicates that the fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors
are divided into three categories:

Chapter 9 • Troubleshooting and Data Recovery 117

READ I/O error while issuing a read request.

WRITE I/O error while issuing a write request.

CKSUM Checksum error. The device returned corrupted data as the result of a read
request.

These errors can be used to determine if the damage is permanent. A small number of
I/O errors may indicate a temporary outage, while a large number may indicate a
permanent problem with the device. These errors do not necessarily correspond to
data corruption as seen by applications. If the device is in a redundant configuration,
the disk devices may show uncorrectable errors, while no errors appear at the mirror
or RAID-Z device level. If this is the case, then ZFS successfully retrieved the good
data, and attempted to heal the damaged data from existing replicas. For more
information on interpreting these errors to determine device failure, see “9.6.1
Determining Type of Failure” on page 121.

Finally, additional auxiliary information is displayed in the last column of output. This
expands on the state field, aiding in diagnosis of failure modes. If a device is
FAULED, this field indicates whether it is because the device is inaccessible or whether
the data on the device is corrupted. If the device undergoing resilvering, this field
displays the current progress. For more information on monitoring resilvering
progress, see “9.6.3.4 Viewing Resilvering Status” on page 124.

9.3.2.3 Scrubbing Status
The third section of output describes the current status of any explicit or background
scrubs. This information is orthogonal to whether any errors are detected on the
system, though it can be used to determine how accurate the data corruption error
reporting is. If the last scrub ended recently, it is fairly certain that any known data
corruption has been discovered.

For more information on data scrubbing and how to interpret this information, see
“9.2 Checking Data Integrity” on page 113.

9.3.2.4 Data Corruption Errors
The status also shows whether there are any known errors associated with the pool.
These errors may have been found while scrubbing the disks, or during normal
operation. ZFS keeps a persistent log of all data errors associated with the pool. This
log is rotated whenever a complete scrub of the system finishes. These errors are
always fatal — their presence indicates that at least one application experienced an
I/O error due to corrupt data within the pool. Device errors within a replicated pool
do not result in data corruption, and are not recorded as part of this log. By default,
only the number of errors found is displayed. A complete list of errors and their
specifics can be found using the -v option.

118 ZFS Administration Guide • November 2005

For more information on interpreting data corruption errors, see “9.7.1 Identifying
Type of Data Corruption” on page 126.

9.3.3 System Messaging
In addition to persistently keeping track of errors with the pool, ZFS also displays
syslog messages when events of interest occur. The following scenarios generate
events to notify the administrator:

� Device state transition — If a device becomes FAULTED, ZFS logs a message
indicating that the fault tolerance of the pool may be compromised. A similar
message is sent if the device is later brought online, restoring the pool to health.

� Data corruption — If any data corruption is seen, ZFS logs a message describing
when and where the corruption was seen. This message is only logged the first
time it is seen; subsequent accesses do not generate a message.

It is important to note that device errors are not mentioned here. If ZFS detects a
device error and automatically recovers from it, there is no notification for the
administrator. This is because such errors do not constitute a failure in the pool
redundancy or data integrity, and because they are typically the result of a driver
problem accompanied by its own set of error messages.

9.4 Damaged Configuration
ZFS keeps a cache of active pools and their configuration on the root filesystem. If this
file is corrupted or somehow becomes out of sync with what is stored on disk, the pool
can no longer be opened. ZFS does everything possible to avoid this situation, though
arbitrary corruption is always possible given the qualities of the underlying filesystem
and storage. This typically results in a pool ’disappearing’ from the system when it
should otherwise be available, though it can also manifest itself as a ’partial’
configuration which is missing an unknown number of top level virtual devices. In
either case, the configuration can be recovered by exporting the pool (if its visible at
all), and re-importing it.

For more information on importing and exporting pools, see “4.7 Storage Pool
Migration” on page 45.

Chapter 9 • Troubleshooting and Data Recovery 119

9.5 Repairing a Missing Device
If a device cannot be opened, it displays as UNAVAILABLE in the zpool status
output. This means that ZFS was unable to open the device when the pool was first
accessed, or the device has since become unavailable. If the device causes a top level
virtual device to be unavailable, then nothing in the pool can be accessed. Otherwise,
the fault tolerance of the pool may be compromised. In either case, the device simply
needs to be reattached to the system in order to restore normal operation.

9.5.1 Physically Reattaching the Device
Exactly how to reattach a missing device depends completely on the device in
question. If the device is a network attached drive, connectivity should be restored. If
the device is a USB or other removable media, it should be reattached to the system. If
the device is a local disk, a controller may have died such that the device is no longer
visible to the system. In this case, the controller should be replaced at which point the
disks should again be available. Other pathologies exist and depend on the type of
hardware and its configuration. If a drive fails such that it is no longer visible to the
system (an unlikely event), it should be treated as a damaged device and follow the
procedures outlined in “9.6 Repairing a Damaged Device” on page 121.

9.5.2 Notifying ZFS of Device Availability
Once the device is reattached to the system, ZFS may or may not automatically detect
its availability. If the pool was previously faulted, or the system is rebooted as part of
the attach procedure, then it automatically rescans all devices when it tries to open the
pool. If the pool was degraded and the device was replaced while the system was up,
the administrator will need to notify ZFS that the device is now available and should
be reopened. This can be done using the zpool online command:

zpool online tank c0t1d0

For more information on onlining devices, see “4.5.2.2 Bringing a Device Online”
on page 38.

120 ZFS Administration Guide • November 2005

9.6 Repairing a Damaged Device
This section describes how to determine device failure types, clearing transient errors,
and replacing a device.

9.6.1 Determining Type of Failure
The term ’damaged device’ is rather vague, and can describe a number of possible
situations:

� Bit rot — Over time, random events (such as magnetic influences and cosmic rays)
can cause bits stored on disk to flip in unpredictable events. These events are
relatively rare, but common enough to cause potential data corruption in large or
long-running systems. These errors are typically transient.

� Misdirected reads or writes — Firmware bugs or hardware faults can cause reads
or writes of entire blocks to reference the incorrect location on disk. These errors
are typically transient, though a large number may indicate a faulty drive.

� Administrator error — Administrators can unknowingly overwrite portions of the
disk with bad data (such as dd(1)ing /dev/zero over portions of the disk) that
cause permanent corruption on disk. These errors are always transient.

� Temporary outage — A disk may become unavailable for a period time, causing
I/Os to fail. This is typically associated with network attached devices, though
local disks can experience temporary outages as well. These errors may or may not
be transient.

� Bad or flaky hardware — This is a catch-all for the various problems that bad
hardware exhibits. This could be consistent I/O errors, faulty transports causing
random corruption, or any number of failures. These errors are typically
permanent.

� Offlined device — If the device is offline, it is assumed that the administrator
placed it in this state because it is presumed faulty. Whether or not this is true can
be determined by the administrator who placed it in this state.

Determining exactly what is wrong can be a difficult and arduous process. The first
step is to examine the error counts in zpool status output:

zpool status pool -v

The errors are divided into I/O errors and checksum errors, which may indicate the
possible failure type. Typical operation predicts a very small number of errors (just a
few over long periods of time). If you are seeing large numbers of errors, then it
probably indicates impending or complete device failure (although the pathology for

Chapter 9 • Troubleshooting and Data Recovery 121

administrator error can result in large error counts). The other source of information is
the system log. If there are a large number of messages from the SCSI or fibre channel
driver, then it probably indicates serious hardware problems. If there are no syslog
messages whatsoever, then the damage is likely transient.

The goal is to answer the following question:

Is another error likely to be seen on this device?

Those errors that were one-of-a-kind are considered “transient”, and do not indicate
potential failure. Those errors which are persistent, or severe enough to indicate
potential hardware failure, are considered “fatal”. The act of determining the type of
error is beyond the scope of any automated software currently available with ZFS, and
so much be done manually by the administrator. Once the determination is made, the
appropriate action can be taken: either clear the transient errors or replace the device
due to fatal errors. These repair procedures are described in the next sections.

Note even if the device errors are considered transient, it still may have caused
uncorrectable data errors within the pool. These errors require special repair
procedures, even if the underlying device is deemed healthy or otherwise repaired.
For more information on repairing data errors, see “9.7 Repairing Damaged Data”
on page 126.

9.6.2 Clearing Transient Errors
If the errors seen are deemed transient, in that they are unlikely to effect the future
health of the device, then the device errors can be safely cleared to indicate that there
was no fatal error. To clear a device of any errors, simply online the device using the
zpool online command:

zpool online tank c1t0d0

This syntax clears any errors associated with the device.

For more information on onlining devices, see “4.5.2.2 Bringing a Device Online”
on page 38.

9.6.3 Replacing a Device
If device damage is permanent, or future permanent damage is likely, the device needs
to be replaced. Whether or not the device can be replaced depends on the
configuration.

122 ZFS Administration Guide • November 2005

9.6.3.1 Determining if a Device can be Replaced
In order for a device to be replaced, the pool must be in the ONLINE state, and the
device must be part of a replicated configuration, or it must be healthy (in the ONLINE
state). If the disk is part of a replicated configuration, there must be sufficient replicas
from which to retrieve good data. If two disks in a four-way mirror are faulted, then
either can be replaced since there are healthy replicas. On the other hand, if two disks
in a four-way RAID-Z device are faulted, then neither can be replaced since there are
not enough replicas from which to retrieve data. If the device is damaged but
otherwise online, it can be replaced as long as the pool is not in the FAULTED state,
though any bad data on the device is copied to the new device unless there are
sufficient replicas with good data. In the following configuration:

mirror DEGRADED
c0t0d0 ONLINE
c0t0d1 FAULTED

The disk c0t0d1 can be replaced, and any data in the pool is copied from the good
replica, c0t0d0. The disk c0t0d0 can also be replaced, though no self-healing of data
can take place since there is no good replica available. In the following configuration:

raidz FAULTED
c0t0d0 ONLINE
c0t0d1 FAULTED
c0t0d2 FAULTED
c0t0d3 ONLINE

Neither of the faulted disks can be replaced. The ONLINE disks cannot be replaced
either, since the pool itself is faulted in this case. In the following configuration:

c0t0d0 ONLINE
c0t0d1 ONLINE

Either top level disk can be replaced, though any bad data present on the disk is
copied to the new disk. If either disk were faulted, then no replacement could be done
since the pool itself would be faulted.

9.6.3.2 Unreplaceable Devices
If a loss of device causes the pool to become faulted, or the device contains too many
data errors in an unreplicated configuration, then it cannot safely be replaced. Without
sufficient replicas, there is no good data with which to heal the damaged device. In
this case, the only option is to destroy the pool and recreate the configuration,
restoring your data in the process.

For more information on restoring an entire pool, see “9.7.3 Repairing Pool Wide
Damage” on page 128.

Chapter 9 • Troubleshooting and Data Recovery 123

9.6.3.3 Replacing a Device
Once it has been determined that a device can be replaced, simply use the zpool
replace command. If you are replacing the damaged device with another different
device, use the following command:

zpool replace tank c0t0d0 c0t0d1

This command begins migrating data to the new device from the damaged device, or
other devices in the pool if it is in a replicated configuration. When it is finished, it
detaches the damaged device from the configuration, at which point it can be removed
from the system. If you have already removed the device and replaced it with a new
device in the same location, use the single device form of the command:

zpool replace tank c0t0d0

This command takes an unformatted disk, formats it appropriately, and then begins
resilvering data from the rest of the configuration.

For more information on the zpool replace command, see “4.5.3 Replacing
Devices” on page 39.

9.6.3.4 Viewing Resilvering Status
The process of replacing a drive can take an extended period of time, depending on
the size of the drive and the amount of data in the pool. The process of moving data
from one device to another is known as resilvering, and can be monitored via the
zpool status command. Traditional filesystems resilver data at the block level.
Since ZFS eliminates the artificial layering of the volume manager, it is capable of
performing resilvering in a much more powerful and controlled manner. The two
main advantages are:

� ZFS only resilvers the minimum amount of data necessary. In the case of a short
outage (as opposed to a complete device replacement), the entire disk can be
resilvered in a matter of minutes (or seconds), rather than having to resilver the
whole disk, or complicate matters with “dirty region” logging that some volume
managers support. When replacing a whole disk, this means that the resilvering
process takes time proportional to the amount of data used on disk — replacing a
500GB disk can take seconds if there is only a few gigabytes of used space in the
pool.

� Resilvering is interruptible and safe. If the system loses power or is rebooted, the
resilvering process will resume exactly where it left off, without need for
administrator intervention.

To view the resilvering process, use the zpool status command:

zpool status tank
pool: tank
state: DEGRADED

124 ZFS Administration Guide • November 2005

reason: One or more devices is being resilvered.
action: Wait for the resilvering process to complete.

see: http://www.sun.com/msg/ZFS-XXXX-08
config:

NAME STATE READ WRITE CKSUM
test DEGRADED 0 0 0
mirror DEGRADED 0 0 0
replacing DEGRADED 0 0 0 52% resilvered
c0t0d0 ONLINE 0 0 0
c0t0d2 ONLINE 0 0 0 21GB/40GB ETA 0:13

c0t0d1 ONLINE 0 0 0

scrub: none requested

In the above example, the disk c0t0d0 is being replaced by c0t0d2. This can be seen
with the introduction of the replacing virtual device in the configuration. This is not a
real device, nor is it possible for the user to create a pool using this virtual device type.
Its purpose is solely to display the resilvering process, and to identify exactly which
device is being replaced.

Note that any pool currently undergoing resilvering is placed in the DEGRADED state,
because the pool is not capable of providing the desired replication level until the
resilvering process is complete. Resilvering always proceeds as fast as possible,
though the I/O is always be scheduled with lower priority than user-requested I/O, to
minimize impact on the system. Once the resilvering is complete, the configuration
reverts to the new, complete, config:

zpool status tank
pool: tank
state: ONLINE
config:

NAME STATE READ WRITE CKSUM
test ONLINE 0 0 0
mirror ONLINE 0 0 0
c0t0d2 ONLINE 0 0 0
c0t0d1 ONLINE 0 0 0

scrub: scrub completed with 0 errors on Tue Nov 15 14:31:51 2005
errors: No data errors detected.

The pool is once again ONLINE, and the original bad disk (c0t0d0) has been removed
from the configuration.

Chapter 9 • Troubleshooting and Data Recovery 125

9.7 Repairing Damaged Data
ZFS uses checksumming, replication, and self-healing data to minimize the chances of
data corruption. Even still data corruption can occur if the pool isn’t replicated,
corruption occurred while the pool was degraded, or an unlikely series of events
conspired to corrupt multiple copies of a piece of data. Regardless of the source, the
result is the same: the data is corrupted and therefore no longer accessible. The action
taken depends on the type of data being corrupted, and its relative value. There are
two basic types of data that can be corrupted:

� Pool metadata. ZFS requires a certain amount of data to be parsed in order to open
a pool and access datasets. If this data is corrupted, it will result in the entire pool
becoming unavailable, or complete portions of the dataset hierarchy being
unavailable.

� Object data. In this case, the corruption is within a specific file or directory. This
may result in a portion of the file or directory being inaccessible, or it may cause
the object to be broken altogether.

Data is verified during normal operation as well as through scrubbing. For more
information on how to verify the integrity of pool data, see “9.2 Checking Data
Integrity” on page 113.

9.7.1 Identifying Type of Data Corruption
By default, the zpool status command shows only the fact that corruption has
occurred, without specifics on where this corruption was seen:

zpool status tank
pool: tank
state: ONLINE
reason: Data corruption detected.
action: Remove corrupted data or restore from backup.

see: http://www.sun.com/msg/ZFS-XXXX-09
config:

NAME STATE READ WRITE CKSUM
test ONLINE 0 0 0
mirror ONLINE 0 0 0
c0t0d2 ONLINE 0 0 0
c0t0d1 ONLINE 0 0 0

scrub: ...
errors: 4 uncorrectable errors seen. Use ’zpool status -v’ for

a complete list.

With the -v option, a complete list of errors is given:

126 ZFS Administration Guide • November 2005

zpool status -v tank
pool: tank
state: ONLINE
reason: Data corruption detected.
action: Remove corrupted data or restore from backup.

see: http://www.sun.com/msg/ZFS-XXXX-09
config:

NAME STATE READ WRITE CKSUM
test ONLINE 0 0 0
mirror ONLINE 0 0 0
c0t0d2 ONLINE 0 0 0
c0t0d1 ONLINE 0 0 0

scrub: ...
errors: TYPE OBJECT DATE

file /home/eschrock/.vimrc 12:03 Oct 2, 2005
file 10$10cde24756492342 12:04 Oct 2, 2005
dir /export/ws/bonwick/current 3:05 Oct 3, 2005
meta 12$010ceefde12a5856 13:45 Oct 17, 2005

The command attempts to determine the pathname for a given object, though this may
not always succeed. For the case where the path cannot be determined, or if the error
is within metadata not corresponding to a particular file, the numeric object ID is
displayed. This does not help in determining the exact location of failure, though it
may help support engineers diagnose the failure pathology to determine if it is a
software bug. Each error is also displayed with a date identifying the last time the
error was seen. This may have been part of a scrubbing operation, or when a user last
tried to access the file.

Each error indicates only that an error was seen at the given point in time. It does not
necessarily mean that the error is still present on the system. Under normal
circumstances, this will always be true. Certain temporary outages may result in data
corruption which is automatically repaired once the outage ends. A complete scrub of
the pool (either explicitly or scheduled) is guaranteed to examine every active block in
the pool, so the error log is reset whenever a scrub finishes. If the administrator
determines that the errors are no longer present, and doesn’t want to wait for a scrub
to complete, all errors in the pool can be reset using the zpool online command.

If the data corruption is in pool-wide metadata, the output is slightly different:

zpool status -v tank
pool: tank
state: FAULTED
reason: Data corruption detected.
action: Restore pool from backup

see: http://www.sun.com/msg/ZFS-XXXX-09
config:

NAME STATE READ WRITE CKSUM
test OFFLINE 0 0 0
mirror ONLINE 0 0 0
c0t0d2 ONLINE 0 0 0
c0t0d1 ONLINE 0 0 0

Chapter 9 • Troubleshooting and Data Recovery 127

scrub: none requested
errors: pool meata corrupted. This pool cannot be accessed.

In the case of pool-wide corruption, the pool is placed into the FAULTED state, since it
cannot possibly provide the needed replication level.

9.7.2 Repairing a Corrupted File or Directory
If a file or directory is corrupted, the system may still be able to function depending on
the type of corruption. First, any damage is effectively unrecoverable — there are no
good copies of the data anywhere on the system. If the data is valuable, there is no
choice except to restore the affected data from backup. Even so, there may be ways to
recover from this corruption without requiring the whole pool to need restoration.

If the damage is within a file data block, then the file can safely be removed, thereby
clearing the error from the system. The first step is to try removing the file with rm(1).
If this doesn’t work, it means the corruption is within the file’s metadata, and ZFS
cannot determine which blocks belong to the file in order to remove it.

If the corruption is within a directory or a file’s metadata, the only choice is to move
the file out of the way. The administrator can safely move any file or directory to a less
convenient location, allowing the original object to be restored in place. Once this is
done, these ’damaged’ files will forever appear in zpool status output, though they
will be in a non-critical location where they should never be accessed. Future
enhancements to ZFS will allow these damaged files to be flagged in such a way as to
remove them from the namespace and not show up as permanent errors in the system.

9.7.3 Repairing Pool Wide Damage
If the damage is in pool metadata that prevents the pool from being openable, then
you have no choice except to restore the pool and all its data from backup. The
mechanism used to do this varies widely by pool configuration and backup strategy
used. First, you should save the configuration as displayed by zpool status so that
you can recreate it once the pool is destroyed. Then, use zpool destroy -f to
destroy the pool. You should also keep a file describing the layout of datasets and the
various locally set properties somewhere safe, as this information will become
inaccessible if the pool is ever rendered inaccessible. Between the pool configuration
and dataset layout, you can reconstruct your complete configuration after destroying
the pool. The data can then be populated using whatever backup/restoration strategy
you have employed.

128 ZFS Administration Guide • November 2005

9.8 Repairing an Unbootable System
ZFS is designed to be robust and stable in the face of errors. Even so, software bugs or
certain unexpected pathologies may cause the system to panic when a pool is
accessed. As part of the boot process, each pool must be opened, which means that
such failures will cause a system to enter into a panic-reboot loop. In order to recover
from this situation, ZFS must be informed not to look for any pools on startup.

ZFS keeps an internal cache of available pools and their configurations in
/etc/zfs/zpool.cache. The location and contents of this file are private, and are
subject to change at a future date. If the system becomes unbootable, boot to the none
milestone using the -m milestone=none boot option. Once the system is up,
remount your root filesystem writable and then remove /etc/zfs/zpool.cache.
These actions cause ZFS to forget than any pools exist on the system, preventing it
from trying to access the bad pool causing the problem. You can then proceed to
normal system state by issuing the svcadm milestone all command. A similar
process can be used when booting from an alternate root in order to perform repairs.

Once the system is up, you can attempt to import the pool using the zpool import
command, although doing so will likely cause the same error as seen during boot,
since it uses the same mechanism to access pools. If more than pool is on the system
and you want to import a specific pool without accessing any others, you will have to
re-initialize the devices in the damaged pool, at which point you can safely import the
good pool.

Chapter 9 • Troubleshooting and Data Recovery 129

130 ZFS Administration Guide • November 2005

	ZFS Administration Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction
	1.1 What is ZFS?
	1.1.1 Pooled Storage
	1.1.2 Transactional Semantics
	1.1.3 Checksums and Self-Healing Data
	1.1.4 Unparalleled Scalability
	1.1.5 Snapshots and Clones
	1.1.6 Simplified Administration

	1.2 ZFS Terminology
	1.3 ZFS Component Naming Conventions

	Getting Started
	2.1 Hardware and Software Requirements
	2.2 Creating a Basic Filesystem
	2.3 Creating a Storage Pool
	Identifying Storage Requirements
	Creating the Pool

	2.4 Creating a Filesystem Hierarchy
	Determining Filesystem Hierarchy
	Creating Filesystems

	Differences from Traditional Filesystems
	3.1 ZFS Filesystem Granularity
	3.2 Space Accounting
	3.3 Out of Space Behavior
	3.4 Mounting Filesystems
	3.5 Volume Management
	3.6 ACLs

	Managing Storage Pools
	4.1 Virtual Devices
	4.1.1 Disks
	4.1.2 Files
	4.1.3 Mirrors
	4.1.4 RAID-Z

	4.2 Self Healing Data
	4.3 Dynamic Striping
	4.4 Creating and Destroying Pools
	4.4.1 Creating a Pool
	4.4.1.1 Basic Pool
	4.4.1.2 Mirrored Pool
	4.4.1.3 RAID-Z Pool

	4.4.2 Handling Pool Creation Errors
	4.4.2.1 Detecting In-Use Devices
	4.4.2.2 Mismatched Replication Levels
	4.4.2.3 Doing a Dry Run
	4.4.2.4 Default Mount Point for Pools

	4.4.3 Destroying Pools
	4.4.3.1 Destroying a Pool With Faulted Devices

	4.5 Device Management
	4.5.1 Adding Devices to a Pool
	4.5.2 Onlining and Offlining Devices
	4.5.2.1 Taking a Device Offline
	4.5.2.2 Bringing a Device Online

	4.5.3 Replacing Devices

	4.6 Querying Pool Status
	4.6.1 Basic Pool Information
	4.6.1.1 Listing All Information
	4.6.1.2 Listing Individual Statistics
	4.6.1.3 Scripting

	4.6.2 I/O Statistics
	4.6.2.1 Pool Wide Statistics
	4.6.2.2 Virtual Device Statistics

	4.6.3 Health Status
	4.6.3.1 Basic Health Status
	4.6.3.2 Detailed Health Status

	4.7 Storage Pool Migration
	4.7.1 Preparing for Migration
	4.7.2 Exporting a Pool
	4.7.3 Determining Available Pools to Import
	4.7.4 Finding Pools From Alternate Directories
	4.7.5 Importing Pools

	Managing Filesystems
	5.1 Creating and Destroying Filesystems
	5.1.1 Creating a Filesystem
	5.1.2 Destroying a Filesystem
	5.1.3 Renaming a Filesystem

	5.2 ZFS Properties
	5.2.1 Read-Only Properties
	5.2.2 Settable Properties

	5.3 Querying Filesystem Information
	5.3.1 Listing Basic Information
	5.3.2 Complex Queries

	5.4 Managing Properties
	5.4.1 Setting Properties
	5.4.2 Inheriting Properties
	5.4.3 Querying Properties
	5.4.4 Querying Properties for Scripting

	5.5 Mounting and Sharing File Systems
	5.5.1 Managing Mount Points
	5.5.1.1 Automatic Mount Points
	5.5.1.2 Legacy Mount Points

	5.5.2 Mounting File Systems
	5.5.3 Temporary Mount Properties
	5.5.4 Unmounting File Systems
	5.5.5 Sharing ZFS File Systems
	5.5.5.1 Controlling Share Semantics
	5.5.5.2 Unsharing Filesystems
	5.5.5.3 Sharing Filesystems
	5.5.5.4 Legacy Shares

	5.6 Quotas and Reservations
	5.6.1 Setting Quotas
	5.6.2 Setting Reservations

	5.7 Backing Up and Restoring ZFS Data
	5.7.1 Backing Up ZFS Filesystems With Other Backup Products
	5.7.2 Backing Up a ZFS Snapshot
	5.7.3 Restoring a ZFS Snapshot
	5.7.4 Remote Replication of a ZFS File System

	ZFS Snapshots and Clones
	6.1 ZFS Snapshots
	6.1.1 Creating and Destroying ZFS Snapshots
	6.1.1.1 Renaming ZFS Snapshots

	6.1.2 Displaying and Accessing ZFS Snapshots
	6.1.2.1 Snapshot Space Accounting

	6.1.3 Rolling Back to a Snapshot

	6.2 ZFS Clones
	6.2.1 Creating a Clone
	6.2.2 Destroying a Clone

	Using ACLs to Protect ZFS Files
	7.1 New Solaris ACL Model
	7.1.1 ACL Format Description
	7.1.2 ACL Inheritance
	7.1.3 ACL Property Modes

	7.2 Using ACLs on ZFS Files
	7.3 Setting and Displaying ACLs on ZFS Files
	7.3.1 Setting ACL Inheritance on ZFS Files

	Advanced Topics
	8.1 Emulated Volumes
	8.1.1 Emulated Volumes as Swap or Dump Devices

	8.2 Using ZFS on a Solaris System With Zones Installed
	8.2.1 Adding File Systems to a Non-Global Zone
	8.2.2 Delegating Datasets to a Non-Global Zone
	8.2.3 Adding ZFS Volumes to a Non-Global Zone
	8.2.4 Using ZFS Storage Pools Within a Zone
	8.2.5 Property Management Within a Zone
	8.2.6 Understanding the zoned Property

	8.3 ZFS Alternate Root Pools
	8.3.1 Creating ZFS Alternate Root Pools
	8.3.2 Importing Alternate Root Pools

	8.4 ZFS Rights Profiles

	Troubleshooting and Data Recovery
	9.1 ZFS Failure Modes
	9.1.1 Missing Devices
	9.1.2 Damaged Devices
	9.1.3 Corrupted Data

	9.2 Checking Data Integrity
	9.2.1 Data Repair
	9.2.2 Data Validation
	9.2.3 Controlling Data Scrubbing
	9.2.3.1 Explicit Scrubbing
	9.2.3.2 Background Scrubbing
	9.2.3.3 Scrubbing and Resilvering

	9.3 Identifying Problems
	9.3.1 Determining if Problems Exist
	9.3.2 Understanding zpool status Output
	9.3.2.1 Overall Status Information
	9.3.2.2 Configuration Information
	9.3.2.3 Scrubbing Status
	9.3.2.4 Data Corruption Errors

	9.3.3 System Messaging

	9.4 Damaged Configuration
	9.5 Repairing a Missing Device
	9.5.1 Physically Reattaching the Device
	9.5.2 Notifying ZFS of Device Availability

	9.6 Repairing a Damaged Device
	9.6.1 Determining Type of Failure
	9.6.2 Clearing Transient Errors
	9.6.3 Replacing a Device
	9.6.3.1 Determining if a Device can be Replaced
	9.6.3.2 Unreplaceable Devices
	9.6.3.3 Replacing a Device
	9.6.3.4 Viewing Resilvering Status

	9.7 Repairing Damaged Data
	9.7.1 Identifying Type of Data Corruption
	9.7.2 Repairing a Corrupted File or Directory
	9.7.3 Repairing Pool Wide Damage

	9.8 Repairing an Unbootable System

