
Brooks Davis
The Aerospace Corporation

<brooks@{aero,freebsd}.org>
September 13, 2007

http://people.freebsd.org/~brooks/pubs/eurobsdcon2007/

Building Clusters With FreeBSD

© 2006-2007 The Aerospace Corporation

Tutorial Outline

● Overview of Fellowship
● Cluster Architecture Issues
● Operational Issues
● Thoughts on a Second Cluster
● FreeBSD specifics

Overview of Fellowship

Overview of Fellowship

● The Aerospace Corporation's corporate,
unclassified computing cluster

● Designed to be a general purpose cluster
– Run a wide variety of applications
– Growth over time
– Remote access for maintainability

● Gaining experience with clusters was a goal
● In production since 2001
● >100 users

Overview of Fellowship
System Software

● FreeBSD 6.2
● Sun Grid Engine (SGE) scheduler
● Ganglia cluster monitor
● Nagios network monitor

Overview of Fellowship
Hardware

● 352 dual-processor nodes
– 64 Intel Xeon nodes (soon to be quad cores)
– 289 Opteron nodes (152 dual-core)

● 3 TB shared (NFS) disk
● >60TB total storage
● 700GB RAM
● Gigabit Ethernet

– 32 nodes also have 2Gbps Myrinet

Overview of Fellowship
Facilities

● ~80KVA power draw
– Average US house can draw 40KVA max

● 273 kBTU/hr ~= 22Tons of refrigeration
● 600 sq ft floor space

– Excluding HVAC and power distribution

Overview of Fellowship
Network Topology

Aerospace
Network

10.5.0.0/16

Cat6509

r03n01
r03n02

...
r03n03

r01n01
r01n02
r01n03

r02n01
r02n02
r02n03

...

...

r03n01
r03n02
r03n03

...

fellowship

frodo

gamgee

arwen

elrond

moria

Cluster Architecture Issues

● Architecture matters
– Mistakes are compounded when you buy

hundreds of machines
● Have a requirements process

– What are your goals?
– What can you afford?

● Upfront
● Ongoing

Cluster Architecture Issues

● Operating System
● Processor Architecture
● Network Interconnect
● Storage
● Form Factor
● Facilities
● Scheduler

Cluster Architecture Issues
Slide Format

● Trade offs and Considerations
– The trade space and other things to considers

● Options
– Concrete options

● What we did on Fellowship
● How it worked out

Operating System

Trade offs and Considerations
● Cost: Licensing, Support
● Performance: Overhead, Driver quality
● Hardware Support: Processor, Network,

Storage
● Administration: Upgrade/patch process,

software installation and management
● Staff experience: software porting,

debugging, modification, scripting

Operating System

Options
● Linux

– General purpose distros: Debian, Fedora, Red
Hat, SuSE, Ubuntu, etc.

– Cluster kits: Rocks, OSCAR
– Vendor specific: Scyld

● BSD: FreeBSD, NetBSD, OpenBSD
● MacOS/Darwin
● Commercial Unix: Solaris, AIX, HPUX, Tru64
● Windows

Operating System

What we did on Fellowship
● FreeBSD

– Started with 4.x
– Moved to 6.x

How it worked
● Netboot works well
● Linux emulation supports commercial code

(Mathematica, Matlab)
● No system scope threads in 4.x (fixed in 5.x)
● Had to port SGE, Ganglia, OpenMPI
● No parallel debugger

Processor Architecture

Trade offs and Considerations
● Cost
● Power consumption
● Heat production
● Performance: Integer, floating point, cache

size and latency, memory bandwidth and
latency, addressable memory

● Software Support: Operating system,
hardware drivers, applications (libraries),
development tools

Processor Architecture

Options
● IA32 (i386): AMD, Intel, Transmeta, Via
● AMD64 (EM64T): AMD, Intel
● IA64 (Itanium)
● SPARC
● PowerPC
● Power
● Alpha
● MIPS
● ARM

Processor Architecture

What we did on fellowship
● Intel Pentium III's for the first 86
● Intel Xeons for the next 76
● AMD Opterons for the most recent

purchases (169)
● Retired Pentium III's this year
How it worked
● Pentium III's gave good service
● Xeons and Opterons performing well
● Considering 64-bit mode for the future
● Looking at Intel Woodcrest CPUs

Network Interconnects

Trade offs and Considerations
● Cost: NIC, cable, switch ports
● Performance: throughput, latency
● Form factor: cable management and

termination
● Standardization: commodity vs proprietary
● Available switches: size, inter-switch links
● Separation of different types of traffic

Network Interconnects

Options
● 10/100 Ethernet
● Gigabit Ethernet
● 10 Gigabit Ethernet: fast
● Infiniband: fast, low latency
● 10 Gb Myrinet: fast, low latency
● Others: Dolphin, Fiber Channel

Network Interconnects

What we did on Fellowship
● Gigabit Ethernet
● One rack of 2Gbps Myrinet nodes
How it worked
● Gigabit Ethernet is now the default option for

clusters
● Fast enough for most of our applications
● Some applications would like lower latency
● Looking at 10GbE and 10Gb Myrinet

Storage

Trade offs and Considerations
● Cost
● Capacity
● Throughput
● Latency
● Locality
● Scalability
● Manageability
● Redundancy

Storage

Options
● Local Disk
● Protocol Based Network Storage: host or

NAS appliance based
● Storage Area Network
● Clustered Storage

Storage

What we did on fellowship
● Host based NFS for home directories, node

roots, and some software
● Local disks for scratch and swap
● Moved home directories to a Netapp in 2005
How it worked
● NFS is scaling fine so far
● Enhanced Warner Losh's diskprep script to

keep disk layouts up to date
● Users keep filling the local disks
● Disk failures are a problem

Form Factor

Trade offs and Considerations
● Cost
● Maximum performance
● Maintainability
● Cooling
● Peripheral options
● Volume (floor space)
● Looks

Form Factor

Options
● PCs on shelves
● Rackmount system

– Cabinets
– 4-post racks
– 2-post racks

● Blades

Form Factor

What we did on fellowship
● 1U nodes in 2-post racks
● Core equipment in short 4-post racks
● 6 inch wide vertical cable management with

direct runs from the switch in first row
● Moved to 10 inch wide vertical management

in second row and patch panels in both rows
● Now installing new core equipment in

cabinets

Form Factor

Form Factor

How it worked
● Node racks are accessible and fairly clean

looking
● Patch panels, 10 inch cable management,

and some custom cable lengths helped
● Short 4-post racks didn't work well for real

servers
● Watch out for heavy equipment!

Facilities

Trade offs and Considerations
● Cost: space, equipment, installation
● Construction time
● Reliability

Facilities

Options
● Plug it in and hope
● Convert a space (office, store room, etc)
● Build or acquire a real machine room
● Use an old mainframe room

Facilities

Facilities

What we did on Fellowship
● Built the cluster in our existing 15,000 sq ft.

underground machine room
– 500KVA building UPS and two layers of backup

generators
● New UPS and power distribution units

(PDUs) being installed for expansion

Facilities

How it worked
● Good space with plenty of cooling
● Power was initially adequate, but is

becoming limited
– Adding a new UPS and PDUs

● Cooling issues with new UPS
● Remote access means we don't have to

spend much time there

Scheduling Scheme

Trade offs and Considerations
● Cost
● Efficiency
● Support of policies
● Fit to job mix
● User expectations

Scheduling Scheme

Options
● No scheduler
● Custom or application specific scheduler
● Batch job system
● Time sharing

Scheduling Scheme

What we did on Fellowship
● None initially
● Tried OpenPBS (not stable 4 years ago, no

experience since)
● Ported Sun Grid Engine (SGE) 5.3 with help

from Ron Chen
● Switched to SGE 6 and mandated use in

January

Scheduling Scheme

How it worked
● Voluntary adoption was poor
● Forced adoption has gone well
● Users have preconceived notions of

computers that don't fit reality with batch
schedulers

● We have modified SGE to add features
missing from the FreeBSD port with good
success

Operational Issues

● Building, Refresh and Upgrade Cycle
● User Configuration Management
● System Configuration management
● Monitoring
● Inventory Management
● Disaster Recovery

Initial Build, Refresh and Major
Upgrade Cycle

Trade offs and Considerations
● Startup cost
● Ongoing cost
● Homogeneity vs Heterogeneity
● Gradual migration vs abrupt transitions

Initial Build, Refresh and Major
Upgrade Cycle

Options
● Build

– Build all at once
– Gradual buildup

● Refresh
– Build a new cluster before retirement
– Build a new cluster in the same location
– Replace parts over time

● Upgrades
– Upgrade everything at once
– Partion and gradually upgrade
– Never upgrade

Initial Build, Refresh and Major
Upgrade Cycle

What we did on Fellowship
● Build

– Gradual buildup of nodes
– Periodic purchase of new core systems for

expansion and replacement
● Refresh

– Replaced PIII's this year
– Xeons to be replaced next year if we don't

expand to a third row
● Upgrades

– Minor OS upgrades in place
– FreeBSD 4 to 6 and SGE 5 to 6 by partitioning

Initial Build, Refresh and Major
Upgrade Cycle

How it worked
● Build

– Most of our apps don't care
– Different machines had different exposed serial

ports which caused a problem for serial consoles
● Refresh

– Rapid failures of Pentium III's were unexpected
● Major Upgrades

– Partitioning allowed a gradual transition
– New machines offered incentive to move
– Node locked SSH keys and licenses caused

problems

System Testing

Trade offs and Considerations
● Need to validate system stability and

performance
– LLNL says: “bad performance is a bug”

● “Bad batches” of hardware happen
● Lots of hardware means the unlikely is much

more common

System Testing

Options
● Leave it to the vendor
● Have a burn-in period

– No user access
– Limited user access

● Periodic testing

System Testing

What we did on Fellowship
● Vendor burn in

– Increasingly strict requirements to ship
● Let users decide where to run (prior to

mandatory scheduling)
● Scheduler group of nodes needing testing
● Working on building up a set of performance

and stress tests

System Testing

How it worked
● Ad hoc testing makes problems surprising

too often
● Users find too many hardware issues before

we do
● Group of nodes is easy to administer

System Configuration
Management

Trade offs and Considerations
● Network Scalability
● Administrator Scalability
● Packages vs custom builds
● Upgrading system images vs new, clean

images

System Configuration
Management

Options
● Maintaining individual nodes
● Push images to nodes
● Network booted with shared images

– Read only
– Copy-on-write

System Configuration
Management

What we did on Fellowship
● PXE boot node images with automatic

formatting of local disks for swap and scratch
● Upgraded copies of the image in 4.x
● Building new images for each upgrade in 6.x
How it worked
● Great overall
● A package build system to help keep

frontend and nodes in sync would be nice
● Network bottle neck does not appear to be a

problem at this point

User Configuration
Management

Trade offs and Considerations
● Maintainability
● User freedom and comfort
● Number of supported shells

User Configuration
Management

Options
● Make users handle it
● Use /etc/skel to provide defaults and have

users do updates
● Use a centrally located file that users source
● Don't let users do anything

User Configuration
Management

What we did on Fellowship
● /etc/skel defaults plus users updates to start
● Added a central script recently

– This script uses an sh script and some wrapper
scripts to work with both sh and csh style shells

● Planning a manual update
How it worked
● Bumpy, but improving with the central script

Monitoring

Trade offs and Considerations
● Cost
● Functionality
● Flexibility
● Status vs alarms

Monitoring

Options
● Cluster management systems
● Commercial network management systems:

Tivoli, OpenView
● Open Source system monitoring packages:

Big Sister, Ganglia, Nagios
● Most schedulers
● SNMP

Monitoring

What we did on Fellowship
● Ganglia early on
● Added Nagios recently
● SGE
How it worked
● Ganglia provides very user friendly output

– Rewrote most of FreeBSD support
● Nagios working well
● Finding SGE increasingly useful

Disaster Recovery

Trade offs and Considerations
● Cost up front
● Cost of recovery
● Time to recovery
● From what type of disaster

– Hardware failure
– Loss of building
– Data contamination/infection/hacking

Disaster Recovery

Options
● Do nothing
● Local backups
● Off site backups
● Geographically redundant clusters

– Transparent access to multiple clusters

Disaster Recovery

What we did on Fellowship
● Local backups (Bacula, formerly AMANDA)
● Working toward off site backups
How it worked
● No disasters yet
● Local backups are inadequate
● Looking at a second cluster
● Investigating transparent resource discovery

and access

Other Issues

● Virtualization
● System Naming and Addressing
● User Access
● Administrator Access
● User Training and Support
● Inventory Management

Thoughts on a Second Cluster

● We are planning to build a second, similar
cluster on the east coast

● Looking at blades for density and
maintenance

● Interested in higher speed, lower latency
interconnects for applications which can use
them

● Considering a completely diskless approach
with clustered storage to improve
maintainability and scalability

FreeBSD Specifics

● Diskless booting
– Image creation
– Disk initialization

● Using ports on a Cluster
● Ganglia demo
● SGE installation and configuration demo

Diskless Booting:
Image Creation

● Hacked copy of nanobsd Makefile
– Removed flash image support
– Added ability to create extra directories for use

as mount points
– Build a list of ports in the directory via chroot

● Ports directory created with portsnap
● Ports are built using portinstall in a chroot
● Mount linprocfs before every chroot and unmount it

afterward
● Distfile pre-staging is supported for non-redistributable

distfiles and faster rebuilds
● Packages are also supported
● DESTDIR support in ports will eventually make this

obsolete

Diskless Booting:
Image Creation

TODO
● Switch to nanobsd scripts (in place of

obsolete Makefiles)
● Handle sudoers file in images

– Copy on in place after install, extend
rc.initdiskless /conf support to /usr/local/etc, or
add the ability to override in port

● Find a way to keep packages in sync
between nodes and front end systems

Diskless Booting
Startup Process

● PXE boot with NFS root
● /etc/rc.initdiskless initializes /etc from data in

/conf (mounted from /../conf to allow sharing)
– /conf/base/etc remounts /etc
– /conf/default/etc includes rc.conf which simply

sources rc.conf.{default,bcast,ipaddr} allowing
configuration to live in the right place

● /etc/rc.d/diskprep creates swap, /tmp, and
/var and labels them to fstab stays consistant
reguardless of disk configuration

● Normal boot from this point on

Diskless Booting:
Disk Initalization

● Use sysutils/diskprep port (modified version
of Warner Losh's tool for embedded
deployments
– If the right GEOM volume label doesn't exist,

reconfigure the disk
● Could be improved

– Reboot during initalization is often fatel
– Better control of fsck at boot would be useful

● Option to newfs file systems who's contents we don't
care about

– Alternate superblock printout in newfs too noisy

Using Ports on a Cluster

● Very good for languages and cluster tools
● Unusable for MPI ports due to the need for

different ones with different compilers
– Need a bsd.mpi.mk

● Mixed for libraries
– Some are fine with one compiler but others could

benefit from more than one version, particularly
Fortran code

● Hard to keep nodes and front ends in sync
– Need an SGE based package build system :-)

Using Ports on a Cluster

Useful Ports
● lang/gcc*, lang/icc, lang/ifc, etc.
● net-mgmt/nagios
● sysutils/diskprep
● sysutils/ganglia-monitor-core
● sysutils/ganglia-webfrontend
● sysutils/sge

Diskless Node Demo

● Building a Node Image
● Booting a Diskless Node
● Diskless Configuration
● Installing ports

Building a Node Image

make buildworld
make KERNCONF=SOEKRIS buildkernel
CLUSTER_ROOT=/usr/roots/
make DESTDIR=${CLUSTER_ROOT} \
installworld

make DESTDIR=${CLUSTER_ROOT} \
distribution

make DESTDIR=${CLUSTER_ROOT} \
KERNCONF=SOEKRIS installkernel

S erial Console Changes

● /boot/loader.conf:
boot_multicons="YES"
boot_serial="YES"
console="comconsole"
comconsole_speed="57600"

● /etc/ttys:
47c47
< ttyd0 "/usr/libexec/getty std.9600" dialup off secure
­­­
> ttyd0 "/usr/libexec/getty std.9600" vt100 on secure

Assorted Mountpoints

mkdir -p ${CLUSTER_ROOT}/usr/ports
mkdir -p ${CLUSTER_ROOT}/usr/home
ln -s /usr/home ${CLUSTER_ROOT}/home

Booting a Diskless Node

● Servers required
– DHCP (or bootpd)
– TFTP (via inetd)
– NFS

DHCP Configuration

● /etc/rc.conf:
dhcpd_ifaces="demo­cluster"
dhcpd_enable="YES"

● ${LOCALBASE}/etc/dhcpd.conf:
This goes in a subnet, host, or group block
server­name "coredump";
next­server 10.1.0.1;
server­identifier 10.1.0.1;
filename "varsym/boot/pxeboot";
option root­path "/usr/roots/demo­cluster";

TFTP Configuration

● /etc/rc.conf:
inetd_enable="YES"
inetd_flags="­a 10.1.0.1"

● /etc/inetd.conf:
tftp dgram udp wait root
/usr/libexec/tftpd \

 tftpd ­l ­u nobody ­s /usr/roots

NFS Configuration

● /etc/rc.conf:
nfs_server_enable="YES"

● /etc/exports:
/usr ­alldirs ­ro ­maproot=root \
 ­network 10.1.0.0 ­mask 255.255.0.0

● or use ZFS

Diskless Configuration
Overview

● /etc/rc.initdiskless uses /conf to
override the contents of directories in /
– Mostly used for /etc

● Mostly documented in a large comment at
the top
– Some features are not documented

● Some documentation in diskless(8)
● Beware: not all the documentation is correct

Diskless Configuration
How it Works

● Warning: highly simplified
● An md(4) (aka MFS) file system is created

for /etc
● For each of the directories
/conf/base/etc, /conf/default/etc,
/conf/<node_bcast_address>/etc,
/conf/<node_ip_address>/etc:
– if ${dir}/diskless_remount mount the NFS

path in the file over the top of the directory
– Copy the contents in to the md(4) file system

Diskless Configuration
S hared /conf

● Simplifies images upgrades
mkdir ${CLUSTER_ROOT}/conf
echo “/../conf” \
 ${CLUSTER_ROOT}/conf/diskless_remount

● Actual /conf in
${CLUSTER_ROOT}/../conf

Diskless Configuration (/conf)
Interesting Files

● base/etc/diskless_remount:
/etc

● default/etc/fstab (Dump and Pass
fields not shown):
Device Mountpoint FStype Options
No / entry, it's unnecessary
10.1.0.1:/usr/home /usr/home nfs ro,bg,tcp

● default/etc/ttys
– Override defaults if you use serial or firewire

consoles
● default/etc/sysctl.conf

– Set alternate limits, etc

Diskless Configuration (/conf)
Interesting Files

● default/etc/rc.conf:
if [­r /etc/rc.conf.default]; then
 . /etc/rc.conf.default
fi
if [­r /etc/rc.conf.bcast]; then
 . /etc/rc.conf.bcast
fi
if [­r /etc/rc.conf.ip]; then
 . /etc/rc.conf.ip
fi

Diskless Configuration (/conf)
Interesting Files

● default/etc/rc.conf.default:
sge_execd_enable="YES"
gmond_enable="YES"
sshd_enable="YES"

● default/etc/ssh/ssh_host*_key*
– We use one set of keys for all nodes to simplify
known_hosts file maintenance

● default/etc/periodic.conf:
– disable mail for non-critical issues and disable

expensive operations like updating the locate db

Ganglia Demo

Ganglia Configuration

● On client and server:
– /etc/rc.conf

gmond_enable=”YES”
– ${LOCALBASE}/etc/gmond.conf

● defaults work on most systems
● On server

– /etc/rc.conf
gmetad_enable=”YES”

– ${LOCALBASE}/etc/gmetad.conf
● defaults work on most systems

SGE Configuration

● Prerequisites
– Physical SGE install

● port: sysutils/sge
– A shared file system
– Entries in /etc/services

● sge_qmaster and sge_execd
● Default to 6444 and 6445 respectively in upcoming

releases (IANA assignments)

Installing SGE qmaster

● cd /usr/local/sge
● ./install_qmaster

– Generally take the defaults
– Group id range

● enter a range of 10-100 unused gids
– qmaster/scheduler startup script

● say no if using the port
– Adding admin and submit hosts

● probably add the local host
– shadow host

● probably not needed
● Add sge_qmaster_enable=”YES” to
/etc/rc.conf

Installing SGE execd
(the official way)

● cd /usr/local/sge
● ./install_execd

– Generally take the defaults
– startup script

● say no if using the port
● Add sge_execd_enable=”YES” to
/etc/rc.conf

● Repeat on every node...

Installing SGE execd
(the scriptable way)

!#/bin/sh
HOST=$1
FQDN=${HOST}.cluster.example.com
SGE_CELL=${SGE_CELL­default}
SPOOLDIR=${SGE_ROOT}/${SGE_CELL}/spool/${HOST}

qconf ­aattr hostgroup hostlist $FQDN @allhosts
qconf ­as ${FQDN}
qconf ­ah ${FQDN}

mkdir ­p ${SPOOLDIR}
mkdir ­p ${SPOOLDIR}/active_jobs
mkdir ­p ${SPOOLDIR}/jobs
mkdir ­p ${SPOOLDIR}/job_scripts
chown ­R sgeadmin ${SPOOLDIR}

Adding a Parallel Environment

● Add the PE
– qconf ­Ap mpich.template

● Add the PE to the PE list for a queue
– qconf ­mq
– Edit the pe_list variable

Questions?

● http://people.freebsd.org/~brooks/pub/eurobsdcon2007/
 eurobsdcon2007-cluster-tutorial.pdf

Disclaimer

● All trademarks, service marks, and trade
names are the property of their respective
owners.

