
Protocol · Engineering · Laboratory 
University of Delaware

Transparent TCP-to-SCTP 
Translation Shim Layer

EuroBSDCon 2007 / Copenhagen, Denmark

Ryan Bickhart
ryan.bickhart@gmail.com



SCTP: Stream Control Transmission Protocol

PhysicalPhysical

Data LinkData Link

NetworkNetwork

TransportTransport

ApplicationApplication

Transport LayerTransport Layer

SCTP UDPUDPTCPTCP

SCTP Characteristics:
 Connection-oriented
 Reliable
 TCP-friendly congestion control
 Message-based
 Partial reliability extension
 Multistreaming ability
 Multihoming support For SCTP protocol 

specifics, see RFC 2960



Shim Concept Explained

TCP-to-SCTP translation: kernel will map calls to 
TCP to equivalent calls to SCTP

Transparent: applications will not be aware the TCP-
to-SCTP translation is even happening – kernel will 
trick them

Shim layer: decision logic to control SCTP use will 
be inserted into existing kernel 



Outline

Motivations

Implementation overview

Controlling the shim

Experimental results

Challenges and future work

Demo



Multiple Addresses in TCP

BB11

BB22

ISP

ISP

ISP

ISP

AA11

AA22

HostHost
BB

HostHost
AA Internet

AA11

AA22 BB22

BB11

TCP: Hosts choose 1 of 4 possible connections

(A1, B1) or (A1, B2) or (A2, B2) or (A2, B1)(A1, B1) or (A1, B2)or (A2, B2)or (A2, B1)



SCTP Multihoming

BB11

BB22

ISP

ISP

ISP

ISP

AA11

AA22

HostHost
BB

HostHost
AA Internet

AA11

AA22 BB22

BB11

SCTP: 1 association incorporating all addresses

({A1, A2}, {B1, B2})



SCTP Multihoming Provides Fault Tolerance

BB11

BB22

ISP

ISP

ISP

ISP

AA11

AA22

HostHost
BB

HostHost
AA Internet

AA11

BB22

BB11BB11

Primary and alternate destinations
SCTP fails over to alternate if primary becomes unreachable

Primary

Alternate

AA22



SCTP Concurrent Multipath Transfer (CMT)

Idea: Actively send data to all available destinations to 
increase throughput

BB11

BB22

ISP

ISP

ISP

ISP

AA11

AA22

HostHost
BB

HostHost
AA

Internet
AA11

BB22

BB11

AA22

Solves problem of usable destinations sitting idle
Current research by Janardhan Iyengar (see links at end)



Motivations to Migrate from TCP to SCTP

Increase application fault tolerance and reliability:
 SCTP Multihoming

Increase application throughput:
 SCTP Concurrent Multipath Transfer

How to take advantage of SCTP benefits?
 Rewrite all existing TCP applications – lots of work
 Incremental deployment (“chicken and egg”) problem

Idea: translate system calls to TCP into equivalent 
calls to SCTP, using SCTP for end-to-end transport



Outline

Motivations

Implementation overview

Controlling the shim

Experimental results

Challenges and future work

Demo



Transparent TCP-to-SCTP Translation

Translation from TCP to SCTP by shim layer is transparent to 
application – no modifications to applications whatsoever

Initial implementation is in FreeBSD 4.10 kernel; currently 
porting to FreeBSD 7.0

Why kernel versus user library – pros and cons?

Transport LayerTransport Layer

SCTP UDPUDPTCPTCP

TCP ApplicationTCP Application

Shim Translation Logic

TCP SCTPSCTP



Socket Layer / API

Maps protocol-independent requests from application 
to protocol-specific implementation in kernel

Kernel Space

User Space

Network LayerNetwork Layer

Transport LayerTransport Layer

ApplicationApplication

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Socket Layer



Sockets

Represent endpoint of network communication

SocketSocket

SocketSocket

Socket

Descriptor 
Table

Application

Kernel

…
connect(socket_desc, …);
…
send(socket_desc, …);
receive(socket_desc, …);
…
close(socket_desc);

socket_desc = socket(domain, type, protocol);



Socket-Protocol Binding

Socket fields:
 Protocol (TCP, UDP, SCTP, etc)
 Configuration information (socket options, etc)
 State (connected, disconnecting, etc)
 I/O buffers (sending, receiving)

ProtocolProtocol

StateState

Send BufferSend Buffer

Receive BufferReceive Buffer

ConfigurationConfiguration

…

TCPTCP
Protocol ModuleProtocol Module

InterfaceInterface

Socket is “attached” to a 
protocol when created

socket_desc = socket(domain, type, IPPROTO_TCP);

Shim State

Shim Parent

Hidden Socket

New fields created 
to support shim



Hidden SCTP Socket

ProtocolProtocol

StateState

ConfigurationConfiguration

…

SCTPSCTP
Protocol ModuleProtocol Module

InterfaceInterface

Hidden Socket

Shim State

TCPTCP
Protocol ModuleProtocol Module

InterfaceInterface

Send BufferSend Buffer

Receive BufferReceive Buffer

ProtocolProtocol

StateState

ConfigurationConfiguration

…

Send BufferSend Buffer

Receive BufferReceive Buffer

TCP Socket

Hidden SCTP Shim Socket

Shim Parent



Kernel Space

User Space

Transport Protocol ModulesTransport Protocol Modules

Socket Layer in Detail

Function call

System call

SCTPSCTP

Socket System Call Implementations

UDPUDPTCPTCP

Socket System Call Stubs

ApplicationApplication

Socket Layer Functions

Function call

Function call to protocol module

Transport LayerTransport Layer

Socket Layer

Socket layer



Hidden Socket Substitution

Transport Protocol Transport Protocol 
ModulesModules

Kernel Space

User Space

Socket System Call 
Implementations

Socket System Call 
Stubs

ApplicationApplication

Socket Layer 
Functions

Operate on 
socket objects

Operate on
socket descriptors

Normal Normal 
TCP TCP 

SocketSocket

Hidden 
SCTP 
Shim 

SocketDescriptor Table

Socket 
Descriptor

Either TCP socket or 
hidden SCTP socket is 
passed to lower layers



Normal TCP / Hidden SCTP Socket Use

Normal Normal 
TCP TCP 

SocketSocket

Hidden 
SCTP 
Shim 

Socket

tcp_connect() 
implementation

tcp_recv() 
implementation

...

tcp_send() 
implementation

Generic requests (connect, send, recv, etc…)

TCP protocol 
interface

connect

send

recv

...

sctp_recv() 
implementation

...

sctp_send() 
implementation

SCTP protocol 
interface

connect

send

recv

...

sctp_connect() 
implementation

Generic requests 
mapped to specific 

implementation

Generic requests 
mapped to specific 

implementation



Client Connecting with Shim Enabled

Client tries connecting with SCTP first and falls back to TCP 
if SCTP does not work

TCPTCP TCPTCP

SCTPSCTP

Connecting Client Listening Server

Calls connect()

SCTPSCTP

TCP Client ApplicationTCP Client Application Server ApplicationServer Application

Shim Logic

SCTPSCTP

TCPTCP TCPTCP

SCTPSCTPSCTPSCTPSCTPSCTP
Transport Layer



Server Bind/Listen with Shim Enabled

TCPTCP

Calls bind()

TCP Server ApplicationTCP Server Application

Shim Logic

SCTPSCTPSCTPSCTPTCPTCP TCPTCP

Calls listen()

TCP Server ApplicationTCP Server Application

Shim Logic

SCTPSCTPSCTPSCTPTCPTCP

Step 1: Server binds socket to 
address and both TCP and SCTP 

ports

Step 2: Server listens on 
both TCP and SCTP sockets

Server listens for 
client connections 

from TCP

Server listens for 
client connections 

from SCTP

Server binds 
to address and 

TCP port

Server binds 
to address and 

SCTP port

Calls duplicated 
for both protocols

Calls duplicated 
for both protocols

Flow of typical server application

Create socket

Bind socket to address/port

Enable listening on socket

Serve clients that connect



TCP and SCTP Listening Sockets

ApplicationApplication

NormalNormal
Listening Listening 

TCP Server TCP Server 
SocketSocket

Hidden
Listening 

SCTP Server 
Socket

TCPTCP SCTP

Connections Associations

New New 
TCP TCP 

Client Client 
SocketSocket

New New 
TCP TCP 

Client Client 
SocketSocket

New 
SCTP 
Client 
Socket

New New 
TCP TCP 

Client Client 
SocketSocket

(from network) (from network)

accept()

Returned by 
accept()

Transport Layer

New New 
TCP TCP 

Client Client 
SocketSocket

Returned 
to App 

via 
accept()

New 
SCTP 
Client 
Socket

Shim parent 
pointer

Step 3: Server accepts 
client sockets and 

handles their requests

bind()listen()



Outline

Motivations

Implementation overview

Controlling the shim

Experimental results

Challenges and future work

Demo



Controlling Shim Operation

Global on/off switch for shim lacks precision – every 
application has same setting

Administrators need finer control

Solution: selectively enable/disable shim on per-
application basis using rules

Rules match application network use based on:
 Addresses
 Subnets
 Port numbers or ranges



Rule Format

Chain
 Local: Rule for local listening (server) sockets
 Remote: Rule for connecting (client) sockets to 

remote endpoints

ChainChain

Policy

Subnet/MaskSubnet/Mask

Port[:Range]Port[:Range]

IP AddressIP Address

Shim Rule

Policy
 Enable: Shim enabled if rules match
 Disable: Shim disabled if rules match

If address, subnet, or port
matches rule, use rule’s policy,
else use global default policy



Rules Semantics

LocalLocal

Enable

--/----/--

8080

----

RemoteRemote

Enable

10.1.1.0/2410.1.1.0/24

----

----

RemoteRemote

Disable

--/----/--

8000:90008000:9000

128.4.30.25128.4.30.25

Matches applications using 
listening (server) socket 

that is bound to any 
address and port 80

Matches applications 
connecting to remote 
host on 10.1.1.0/24 
subnet on any port

Matches applications 
connecting to 128.4.30.25 
on any port in the range 

8000 to 9000



Shim Rules Table Design

RemoteRemote

Enable

RemoteRemote

Disable

…

RemoteRemote

Disable

…

LocalLocal

Disable

…

LocalLocal

Enable

…

LocalLocal

Enable

…

LocalLocal

Enable

…

Remote Disable 
Chain

Remote Enable 
Chain

Local Disable 
Chain

Local Enable 
Chain

----

--/----/--

2222

RemoteRemote

Enable

10.1.2.310.1.2.3

--/----/--

2222

Suppose application calls:

connect(10.1.2.3 port 22);

Disable

Disable

Global Remote Policy

Global Local Policy

First match 
along chain is 
policy used



Shim Administrative Practices

Shim rules system allows policies to fit needs of 
individual sites

Default local/remote policies regulate how 
aggressively the system attempts to use shim

Fine tune default settings with rules:
 Enable or disable shim for specific applications
 Ensure that most restrictive rules appear earlier in chains 

than less restrictive rules



Outline

Motivations

Implementation overview

Controlling the shim

Experimental results

Challenges and future work

Demo



Experimental Results

So far, several applications verified to work as 
expected without modification running over shim:
 Telnet
 SSH
 HTTP using Apache server and Firefox browser
 Streaming audio using Icecast server and XMMS player

End user cannot distinguish between normal TCP 
and shim using SCTP (except by wiresharking!)

Two experiment configurations



TCP-SCTP-TCP Translation

Transport Layer

Socket Layer

UDP Socket SCTP SocketTCP Socket

UDP TCP SCTP

Transport Layer

TCP Client

UDP SocketSCTP Socket TCP Socket

SCTP TCP UDP

TCP Server

SCTP

Association

User Space

Kernel Space

Telnet, SSH, HTTP (Apache + Firefox), streaming 
audio (Icecast + XMMS) work in this configuration!



TCP-SCTP Translation

Transport Layer

Socket Layer

UDP Socket SCTP SocketTCP Socket

UDP TCP SCTP

Transport Layer

TCP Client

UDP SocketSCTP Socket TCP Socket

SCTP TCP UDP

Native SCTP Server

SCTP

Association

User Space

Kernel Space

HTTP (native SCTP-enabled Apache + regular 
Firefox) works in this configuration!



Performance Measurements

Measuring file transfer time with scp over shim

1.5 Mbps / 35 ms latency path created using 
Dummynet running on FreeBSD 4.10; 50-packet tail 
drop queue

Uniform random loss rates of {1%, 3%, 6%, 10%}

Files sizes of {50 KB, 500 KB, 5 MB, 25 MB}

Average transfer times of 30 runs for all but 50 KB; 
90 runs for 50 KB transfers due to higher variance



Performance Results



Interpretation of Results

For low loss rates (less than 3%) and short transfers 
(50 KB), TCP and SCTP perform similarly

At high loss rates for longer file transfers, SCTP 
clearly outperforms TCP
 Both protocols have AIMD congestion control
 SCTP uses SACK by default
 SCTP has Appropriate Byte Counting

Using the shim and SCTP provides performance no 
worse than TCP, and significantly better in some 
situations



Outline

Motivations

Implementation overview

Controlling the shim

Experimental results

Challenges and future work

Demo



Handling Nonblocking Connects

Shim is application-driven: when application 
requests action on a socket, hidden SCTP socket is 
used instead

What happens when action or response is 
asynchronous, like nonblocking connect?



Nonblocking Connect Events

TCPTCP TCPTCP

SCTPSCTP

Connecting Client Listening Server

Calls connect()

SCTPSCTP

TCP Client ApplicationTCP Client Application Server ApplicationServer Application

Shim Logic

SCTPSCTP

TCPTCP TCPTCP

SCTPSCTPSCTPSCTPSCTPSCTP
Transport Layer

connect() returns immediately ?

Calls select()

poll()Kickstart TCP connect

Continues blockingReturns writeable



TCP’s Half-Closed State

TCP uses a 4-way handshake for closing the 
connection, which allows the connection to be in a 
half-closed state

SCTP uses a 3-way handshake for closing the 
association

Both TCP applications must call close before 
connection is torn down; only 1 SCTP application 
calling close will tear down the association

When is this a problem?



FTP Transfer over TCP

Solid lines: Control connection
Dashed lines: Data connection



FTP Transfer over SCTP

Solid lines: Control connection
Dashed lines: Data connection



Handling Half-Close with SCTP Shim

Some applications depend on specific knowledge of 
how TCP handles half-close to function correctly

Goal of transparent translation requires application 
behavior not be changed

Possible solution: emulate the TCP half-close 
semantics by passing state between the two 
endpoints using an unused SCTP data stream



Outline

Motivations

Implementation overview

Controlling the shim

Experimental results

Challenges and future work

Demo



Demo: Path Failure with TCP

BB11

BB22

10.1.1.0/24
Network

AA11

AA22

IcecastIcecast
StreamingStreaming

ServerServer

XMMSXMMS
ClientClient

AA11 BB11

192.168.1.0/24
Network

BB11AA11

Music!

Using TCP, connection 
fails and music stops

Music streamMusic stream
TCP cannot use 

other destinations



Demo: Path Failure with Shim using SCTP

BB11

BB22

10.1.1.0/24
Network

AA11

AA22

IcecastIcecast
StreamingStreaming

ServerServer

XMMSXMMS
ClientClient

AA11 BB11

192.168.1.0/24
Network

BB11AA11

Music!

Shim using SCTP fails 
over to alternate and 
playback continues 

uninterrupted

Music streamMusic stream

BB22AA22

Music streamMusic stream



Further Reading

General SCTP information:
 RFC 2960 (Stream Control Transmission Protocol)
 RFC 3758 (Partial Reliability)

HTTP and FTP over SCTP:
 SCTP: An innovative transport layer protocol for the web

 http://www.cis.udel.edu/~amer/PEL/poc/pdf/WWW2006-SCTPfortheWeb-natarajan.pdf
 Improving multiple file transfers using SCTP 

multistreaming
 http://www.cis.udel.edu/~amer/PEL/poc/pdf/IPCCC2004CORRECTED-FTP-over-SCTP-Natarajan-6-6-2005.pdf

http://www.cis.udel.edu/~amer/PEL/poc/pdf/WWW2006-SCTPfortheWeb-natarajan.pdf
http://www.cis.udel.edu/~amer/PEL/poc/pdf/IPCCC2004CORRECTED-FTP-over-SCTP-Natarajan-6-6-2005.pdf


Questions or Comments?

For more information about SCTP research:
 http://pel.cis.udel.edu

Concurrent Multipath Transfer (CMT)
 http://www.cis.udel.edu/~iyengar/publications/

Questions about transparent TCP-to-SCTP 
translation shim layer:
 ryan.bickhart@gmail.com

http://pel.cis.udel.edu/
http://pel.cis.udel.edu/

