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SCTP: Stream Control Transmission Protocol
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SCTP Characteristics:
 Connection-oriented
 Reliable
 TCP-friendly congestion control
 Message-based
 Partial reliability extension
 Multistreaming ability
 Multihoming support For SCTP protocol 

specifics, see RFC 2960



Shim Concept Explained

TCP-to-SCTP translation: kernel will map calls to 
TCP to equivalent calls to SCTP

Transparent: applications will not be aware the TCP-
to-SCTP translation is even happening – kernel will 
trick them

Shim layer: decision logic to control SCTP use will 
be inserted into existing kernel 
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Multiple Addresses in TCP
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SCTP Multihoming

BB11

BB22

ISP

ISP

ISP

ISP

AA11

AA22

HostHost
BB

HostHost
AA Internet

AA11

AA22 BB22

BB11

SCTP: 1 association incorporating all addresses

({A1, A2}, {B1, B2})



SCTP Multihoming Provides Fault Tolerance
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SCTP Concurrent Multipath Transfer (CMT)

Idea: Actively send data to all available destinations to 
increase throughput
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Solves problem of usable destinations sitting idle
Current research by Janardhan Iyengar (see links at end)



Motivations to Migrate from TCP to SCTP

Increase application fault tolerance and reliability:
 SCTP Multihoming

Increase application throughput:
 SCTP Concurrent Multipath Transfer

How to take advantage of SCTP benefits?
 Rewrite all existing TCP applications – lots of work
 Incremental deployment (“chicken and egg”) problem

Idea: translate system calls to TCP into equivalent 
calls to SCTP, using SCTP for end-to-end transport
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Transparent TCP-to-SCTP Translation

Translation from TCP to SCTP by shim layer is transparent to 
application – no modifications to applications whatsoever

Initial implementation is in FreeBSD 4.10 kernel; currently 
porting to FreeBSD 7.0

Why kernel versus user library – pros and cons?
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Socket Layer / API

Maps protocol-independent requests from application 
to protocol-specific implementation in kernel
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Sockets

Represent endpoint of network communication

SocketSocket

SocketSocket

Socket

Descriptor 
Table

Application

Kernel

…
connect(socket_desc, …);
…
send(socket_desc, …);
receive(socket_desc, …);
…
close(socket_desc);

socket_desc = socket(domain, type, protocol);



Socket-Protocol Binding

Socket fields:
 Protocol (TCP, UDP, SCTP, etc)
 Configuration information (socket options, etc)
 State (connected, disconnecting, etc)
 I/O buffers (sending, receiving)

ProtocolProtocol

StateState

Send BufferSend Buffer

Receive BufferReceive Buffer

ConfigurationConfiguration

…

TCPTCP
Protocol ModuleProtocol Module

InterfaceInterface

Socket is “attached” to a 
protocol when created

socket_desc = socket(domain, type, IPPROTO_TCP);

Shim State

Shim Parent

Hidden Socket

New fields created 
to support shim



Hidden SCTP Socket
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Kernel Space

User Space

Transport Protocol ModulesTransport Protocol Modules

Socket Layer in Detail

Function call
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Hidden Socket Substitution

Transport Protocol Transport Protocol 
ModulesModules

Kernel Space

User Space

Socket System Call 
Implementations

Socket System Call 
Stubs

ApplicationApplication

Socket Layer 
Functions

Operate on 
socket objects

Operate on
socket descriptors

Normal Normal 
TCP TCP 

SocketSocket

Hidden 
SCTP 
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SocketDescriptor Table

Socket 
Descriptor

Either TCP socket or 
hidden SCTP socket is 
passed to lower layers



Normal TCP / Hidden SCTP Socket Use
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Socket

tcp_connect() 
implementation

tcp_recv() 
implementation

...

tcp_send() 
implementation

Generic requests (connect, send, recv, etc…)

TCP protocol 
interface

connect

send

recv

...

sctp_recv() 
implementation

...

sctp_send() 
implementation

SCTP protocol 
interface

connect

send

recv

...

sctp_connect() 
implementation
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implementation

Generic requests 
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Client Connecting with Shim Enabled

Client tries connecting with SCTP first and falls back to TCP 
if SCTP does not work

TCPTCP TCPTCP

SCTPSCTP

Connecting Client Listening Server

Calls connect()

SCTPSCTP

TCP Client ApplicationTCP Client Application Server ApplicationServer Application

Shim Logic

SCTPSCTP

TCPTCP TCPTCP

SCTPSCTPSCTPSCTPSCTPSCTP
Transport Layer



Server Bind/Listen with Shim Enabled

TCPTCP

Calls bind()

TCP Server ApplicationTCP Server Application

Shim Logic

SCTPSCTPSCTPSCTPTCPTCP TCPTCP

Calls listen()

TCP Server ApplicationTCP Server Application

Shim Logic

SCTPSCTPSCTPSCTPTCPTCP

Step 1: Server binds socket to 
address and both TCP and SCTP 

ports

Step 2: Server listens on 
both TCP and SCTP sockets

Server listens for 
client connections 

from TCP

Server listens for 
client connections 

from SCTP

Server binds 
to address and 

TCP port

Server binds 
to address and 

SCTP port

Calls duplicated 
for both protocols

Calls duplicated 
for both protocols

Flow of typical server application

Create socket

Bind socket to address/port

Enable listening on socket

Serve clients that connect



TCP and SCTP Listening Sockets
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Step 3: Server accepts 
client sockets and 

handles their requests

bind()listen()
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Controlling Shim Operation

Global on/off switch for shim lacks precision – every 
application has same setting

Administrators need finer control

Solution: selectively enable/disable shim on per-
application basis using rules

Rules match application network use based on:
 Addresses
 Subnets
 Port numbers or ranges



Rule Format

Chain
 Local: Rule for local listening (server) sockets
 Remote: Rule for connecting (client) sockets to 

remote endpoints

ChainChain

Policy

Subnet/MaskSubnet/Mask

Port[:Range]Port[:Range]

IP AddressIP Address

Shim Rule

Policy
 Enable: Shim enabled if rules match
 Disable: Shim disabled if rules match

If address, subnet, or port
matches rule, use rule’s policy,
else use global default policy



Rules Semantics

LocalLocal

Enable

--/----/--

8080

----

RemoteRemote

Enable

10.1.1.0/2410.1.1.0/24

----

----

RemoteRemote

Disable

--/----/--

8000:90008000:9000

128.4.30.25128.4.30.25

Matches applications using 
listening (server) socket 

that is bound to any 
address and port 80

Matches applications 
connecting to remote 
host on 10.1.1.0/24 
subnet on any port

Matches applications 
connecting to 128.4.30.25 
on any port in the range 

8000 to 9000



Shim Rules Table Design
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…
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Chain
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Chain

----

--/----/--

2222

RemoteRemote

Enable

10.1.2.310.1.2.3

--/----/--

2222

Suppose application calls:

connect(10.1.2.3 port 22);

Disable

Disable

Global Remote Policy

Global Local Policy

First match 
along chain is 
policy used



Shim Administrative Practices

Shim rules system allows policies to fit needs of 
individual sites

Default local/remote policies regulate how 
aggressively the system attempts to use shim

Fine tune default settings with rules:
 Enable or disable shim for specific applications
 Ensure that most restrictive rules appear earlier in chains 

than less restrictive rules
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Experimental Results

So far, several applications verified to work as 
expected without modification running over shim:
 Telnet
 SSH
 HTTP using Apache server and Firefox browser
 Streaming audio using Icecast server and XMMS player

End user cannot distinguish between normal TCP 
and shim using SCTP (except by wiresharking!)

Two experiment configurations



TCP-SCTP-TCP Translation
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Telnet, SSH, HTTP (Apache + Firefox), streaming 
audio (Icecast + XMMS) work in this configuration!



TCP-SCTP Translation
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HTTP (native SCTP-enabled Apache + regular 
Firefox) works in this configuration!



Performance Measurements

Measuring file transfer time with scp over shim

1.5 Mbps / 35 ms latency path created using 
Dummynet running on FreeBSD 4.10; 50-packet tail 
drop queue

Uniform random loss rates of {1%, 3%, 6%, 10%}

Files sizes of {50 KB, 500 KB, 5 MB, 25 MB}

Average transfer times of 30 runs for all but 50 KB; 
90 runs for 50 KB transfers due to higher variance



Performance Results



Interpretation of Results

For low loss rates (less than 3%) and short transfers 
(50 KB), TCP and SCTP perform similarly

At high loss rates for longer file transfers, SCTP 
clearly outperforms TCP
 Both protocols have AIMD congestion control
 SCTP uses SACK by default
 SCTP has Appropriate Byte Counting

Using the shim and SCTP provides performance no 
worse than TCP, and significantly better in some 
situations
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Handling Nonblocking Connects

Shim is application-driven: when application 
requests action on a socket, hidden SCTP socket is 
used instead

What happens when action or response is 
asynchronous, like nonblocking connect?



Nonblocking Connect Events

TCPTCP TCPTCP

SCTPSCTP

Connecting Client Listening Server

Calls connect()

SCTPSCTP

TCP Client ApplicationTCP Client Application Server ApplicationServer Application

Shim Logic

SCTPSCTP

TCPTCP TCPTCP

SCTPSCTPSCTPSCTPSCTPSCTP
Transport Layer

connect() returns immediately ?

Calls select()

poll()Kickstart TCP connect

Continues blockingReturns writeable



TCP’s Half-Closed State

TCP uses a 4-way handshake for closing the 
connection, which allows the connection to be in a 
half-closed state

SCTP uses a 3-way handshake for closing the 
association

Both TCP applications must call close before 
connection is torn down; only 1 SCTP application 
calling close will tear down the association

When is this a problem?



FTP Transfer over TCP

Solid lines: Control connection
Dashed lines: Data connection



FTP Transfer over SCTP

Solid lines: Control connection
Dashed lines: Data connection



Handling Half-Close with SCTP Shim

Some applications depend on specific knowledge of 
how TCP handles half-close to function correctly

Goal of transparent translation requires application 
behavior not be changed

Possible solution: emulate the TCP half-close 
semantics by passing state between the two 
endpoints using an unused SCTP data stream
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Demo: Path Failure with TCP
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Demo: Path Failure with Shim using SCTP
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Further Reading

General SCTP information:
 RFC 2960 (Stream Control Transmission Protocol)
 RFC 3758 (Partial Reliability)

HTTP and FTP over SCTP:
 SCTP: An innovative transport layer protocol for the web

 http://www.cis.udel.edu/~amer/PEL/poc/pdf/WWW2006-SCTPfortheWeb-natarajan.pdf
 Improving multiple file transfers using SCTP 

multistreaming
 http://www.cis.udel.edu/~amer/PEL/poc/pdf/IPCCC2004CORRECTED-FTP-over-SCTP-Natarajan-6-6-2005.pdf

http://www.cis.udel.edu/~amer/PEL/poc/pdf/WWW2006-SCTPfortheWeb-natarajan.pdf
http://www.cis.udel.edu/~amer/PEL/poc/pdf/IPCCC2004CORRECTED-FTP-over-SCTP-Natarajan-6-6-2005.pdf


Questions or Comments?

For more information about SCTP research:
 http://pel.cis.udel.edu

Concurrent Multipath Transfer (CMT)
 http://www.cis.udel.edu/~iyengar/publications/

Questions about transparent TCP-to-SCTP 
translation shim layer:
 ryan.bickhart@gmail.com

http://pel.cis.udel.edu/
http://pel.cis.udel.edu/

