
Disk Encryption
FreeBSD's GEOM offers excellent ways to protect data
from unauthorized access. As long as the operating sys-
tem is running access permissions and Mandatory Access
Controls (MAC) protect the data. Traditional access con-
trols of the operating system do not protect the data from
users who have physical access to the disk however. If the
disk is physically removed from the system and placed
into another one, the data is not protected anymore. This
is particularly dangerous for data on notebook disks.

The cryptographic GEOM classes gbde and geli can pro-
tect data on file systems even from highly motivated and
skilled attackers with deep pockets. This protection works
independent of how the way an attacker gained access to
a disk or system, as long as the data is not decrypted be-
cause the disk is running in a system. Unlike other sys-
tems that are only capable of encrypting single files or
data containers, geli and gbde can encrypt complete disks
below the file system layer.

Features common to both systems:

– disjoint and therefore independently changeable
passphrases that don't require
reencryption of the data

– multiple independet keys (geli: 2, gbde 4)

– possibility to use a random key that is not stored
anywhere

– possibility to use a passphrase and/or key as access
control

Following we present some differences between the sys-
tems:

Encryption - gbde
Only AES is supported as encryption algorithm using a
multikey-setup. The key sectors are protected with
AES256, each other sector with its own AES128 key.

Zones are defined within the drive to spread logically
contiguous data over the whole physical disk.

It supports passphrase and passphrase+key setups, but no
configurations just with a keyfile.

Encryption - geli
Supports the crypto(9)-framework - if the system has
cryptographic hardware available it is used.

Supports various algorithms with definable key lengths
(currently AES, Blowfish and 3DES in a Single-Key Se-
tup).

Offers a simple way to encrypt the root partition when the
kernel is loaded from an external media.

Very fast due to simple sector-to-sector encryption and no
spreading.

Optional verification of data integrity with HMAC.

Encryption - Swap
Encrypting swap space also protects sensitive informati-
on. E.g. if a program asks for a password and FreeBSD
swaps data to disk to make space in RAM, your password
may be written in cleartext to disk. You can encrypt swap
with gbde or geli – you just need to change the fstab ent-
ry.

Additional Information
We strongly recommend using the excellent FreeBSD
handbook:
http://www.freebsd.org/doc/en/books/handbook

For detailed information on GEOM please have a look at:

http://phk.freebsd.dk/pubs/bsdcan-04.slides.geomtut.pdf
http://phk.freebsd.dk/pubs/bsdcan-04.slides.geom.pdf
http://phk.freebsd.dk/pubs/bsdcan-04.slides.gbde.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/5
86-paper_Complete_Hard_Disk_Encryption.pdf
http://wikitest.freebsd.org/gvirstor

FreeBSD
GEOM

Introduction
GEOM is a modular and object oriented framework in the
FreeBSD kernel through which all access to storage me-
dia has been controlled since FreeBSD 5.0. It is located
between the file system and the two I/O-subsystems
CAM and ATA and serves as an abstraction layer to the
geometry of the actual media. Please note that GEOM is
nearly unlimited in its possibilities and more classes are
likely to come soon.

An Overview Of The GEOM Framework
The interesting parts of GEOM, for circles outside acade-
mia, are the available classes and their functionality. We
will therefor concentrate on describing the, in our humble
opinion, most important and most interesting classes and
avoid discussing how the geometry layer (GEOM) works
within the kernel itself. A full description may be found in
the Daemon book.

© 2005-2007 allBSD.de Projekt – written by Daniel Seuffert, translated by Lars Cleary. The BSD Daemon is copyright Marshall McKusik, FreeBSD logo copyright FreeBSD Foundation, valid as of 09.03.2007

FreeBSD GEOM - English

http://www.freebsd.org/cgi/man.cgi?query=gbde&apropos=0&sektion=0&manpath=FreeBSD+6.1-RELEASE&format=html
http://wikitest.freebsd.org/gvirstor
http://events.ccc.de/congress/2005/fahrplan/attachments/586-paper_Complete_Hard_Disk_Encryption.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/586-paper_Complete_Hard_Disk_Encryption.pdf
http://phk.freebsd.dk/pubs/bsdcan-04.slides.gbde.pdf
http://phk.freebsd.dk/pubs/bsdcan-04.slides.geom.pdf
http://phk.freebsd.dk/pubs/bsdcan-04.slides.geomtut.pdf
http://www.freebsd.org/doc/en/books/handbook
http://www.FreeBSD.org/cgi/man.cgi?query=crypto&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=geli&apropos=0&sektion=0&manpath=FreeBSD+6.1-RELEASE&format=html

RAID 0 - gstripe
RAID 0 means, as the name already implies, a RAID with
zero redundancy. RAID 0 can however offer higher trans-
fer rates by combining multiple hard disks and writing in
parallel, also known as striping. If one the hard disks fails
all data is lost however because parts (stripes) of data are
missing. RAID 0 is therefore only recommended in setups
where data availability is much less important than speed.

Using gstripe is simple: Load the module (# kldload
geom_stripe), create a mount point, create a new media (#
gstripe label), write a partition table with bsdlabel and
create a file system with newsfs. Unfortunately the
FreeBSD installer sysinstall is not yet capable of creating
GEOM media; booting from gstripe-media is also not
possible (yet).

RAID 1 - gmirror
A RAID 1 consists of a minimum of two hard disks, each
containing exactly the same data (hence mirror). RAID 1
offers full redundancy of data. The smallest disk defines
the maximum amount of storage available in a mirror. If
one disk fails the other can still deliver data. RAID 1 of-
fers the maximum in data availability, only the failure of
all disks causes a loss of all data.

Using gmirror is as simple as using gstripe, can be used
for root partitions and replacements of failed disks is easi-
ly done. All operations like error detection, disk failure
detection and rebuilding the RAID 1 are done automati-
cally.

RAID 3 - graid3
RAID 3 is a RAID 0 with redundancy, stored on a separa-
te dedicated disk. Since a parallel and not an independent
method is used, this parity disk is not a bottleneck like
with RAID 4, a distribution of parity data is not necessary
as with RAID 5.

Just like gstripe and gmirror, using graid3 is also very
easy. The parity data is stored on the last disk, so the re-
quired number of disks is calculated with the formula
(2^n + 1), e.g. 3, 5, 9, 17 etc.

Combined RAID-Levels
The classes gstripe, gmirror and graid3 can be freely
combined. This way RAID levels 0+1, 10, 0+3 and 30 are
all feasible.

RAID 5 - gvinum
RAID 5 offers higher throughput reading and writing data
as well as redundancy at a low cost, making it one of the
most popular RAID levels. User data and parity informa-
tion are distributed over all disks. Since parity informati-
on is not required for reading operations, all disks are
then available in parallel.

This advantage is however hardly noticeable reading
small amounts of data, reading large files is however si-
gnificantly accelerated. RAID 5 allows for the failure of
one disk for data to be available.

Network - Geomgate
ggate is a GEOM class used to export providers via net-
work. In contrast to NFS those drives shall not be moun-
ted on the server and cannot be used by different concur-
rent clients.
The client is completely responsible for managing Geom-
gate, only pure I/O-requests are handled via the network.

Virtualisation - Gvirstor
gvirstor is a GEOM class which can define a virtual devi-
ce independent of the physical devices and their usage.
This is useful for server consolidation. You can define vir-
tual devices of an arbitrary size, e.g. terabytes, consisting
of any amount or size of physical media, e.g. disks,
GEOM devices or RAID volumes.
The storage space is split into small chunks, e.g. 4 MB
each, and allocated as needed. If the available storage
space is full, any number of additional disks and GEOM
devices can be easily and flexibly added. gvirstor is an
important component of a Logical Volume Manager
(LVM) later to come.
It is a loadable kernel module with its own utility and will
later include an optional GUI. Emphasis has been placed
on easy administration and monitoring of the physical
media. gvirstor is in its final testing phase and will soon
be included in FreeBSD.

FreeBSD: The Power To Serve

Journaling - gjournal
UFS 2, FreeBSD's standard file system, doesn't support
journaling since it has Softupdates. Softupdates is an ex-
tension to UFS which enables meta data to be consistent
without journaling and this with very small speed loss
writing user data. This is done by sorting the meta data
that needs to be written in a consistent order and then wri-
ting the whole block in one operation.

After a system crash it looks as if the meta data had been
wholly written or not at all. Meta data is written in an ato-
mic (indivisible) fashion. The file system is therefore al-
ways consistent.

The only errors that can occur are blocks in the file sys-
tem that are marked as used although they're actually free.
Therefore a file system check is required at each system
startup. To shorten system startup time this check is done
in the background (bgfschk). This can still be annoying
with large disks however.

Therefore a journaling GEOM class has been developed
which will probably be integrated in FreeBSD 6.3. gjour-
nal runs below the file system layer on one or two disk
devices and is independent of file systems and the write
cache of a hard disk.
It is also flexibly combinable with other GEOM classes
and faster than Softupdates, especially with small files be-
cause write operations of meta data are optimized. If it's
run on a gmirror or graid3 even the synchronization is
unnecessary because the data remains consistent.

Compression - geom_uzip
The geom_uzip framework allows read access to com-
pressed disk images. You can save a lot of space on your
disks while using only few CPU cycles reading the data.

Compressed images created with mkuzip(8) are offered to
the kernel with the GEOM label geom_uzip as RAM
disks with md(4).

geom_zip creates a unique md#.uzip device for each
image which can then be used by the FreeBSD kernel to
read it. Writing is not supported though.

© 2005-2007 allBSD.de Projekt – written by Daniel Seuffert, translated by Lars Cleary. The BSD Daemon is copyright Marshall McKusik, FreeBSD logo copyright FreeBSD Foundation, valid as of 09.03.2007

http://www.freebsd.org/cgi/man.cgi?query=md&sektion=4&apropos=0&manpath=FreeBSD+7-current
http://www.freebsd.org/cgi/man.cgi?query=mkuzip&sektion=8&apropos=0&manpath=FreeBSD+7-current

	Virtualisation - Gvirstor

