
Usage examples
Servers for small and medium businesses need to be cost-
effective and secure. Running services like HTTP, Mail
and DNS on multiple machines is very expensive. Using
Jails you can buy just one high-quality machine and run
each service in its own Jail. Thereby saving costs in hard-
ware, maintenance, power and cooling.

Running databases in a secure way is very easy using
Jails. The administrator installs a web-based frontend in a
Jail and the database in another Jail. This way both ser-
vices are segregated and the compromise of one system
does not affect the other.

Testing network services using Jails is also very easy and
cheap. Install a service in Jail and delete or maintain the
Jail when testing is complete.

Further Information
With this short overview we hope we have been able to
show you how FreeBSD Jails can work for you too.

The Wikipedia also has an article on Jails:

http://en.wikipedia.org/wiki/FreeBSD_jail

The manual page for Jails is very important:

man jail

If you're more interested in FreeBSD's security features,
please see the following flyer too:

http://www.allbsd.de/src/Flyer/FreeBSD/PDF/flyer-en-
fbsd-security.pdf

General information on FreeBSD is to be found here:

http://www.FreeBSD.org/doc/en_US.ISO8859-
1/books/handbook/

If you need any help you may visit:

www.bsdforums.org

FreeBSD
Jails

What are Jails?
Jails may be described as ‘FreeBSD within FreeBSD’. A
Jail goes way beyond a simple chroot-environment. A Jail
is a completely independent FreeBSD system within a
FreeBSD system, whereby restrictions and on processes
and child-processes are applied. Processes in a Jail can
not access processes of the host system.

No hardware is emulated like with VMWare, nor is a ker-
nel like with XEN. A Jail shares resources with the host
system. The host system is not affected by changes within
a Jail. The Jail system is far superior in performance to
other virtualization techniques, especially when multiple
virtual instances are running.

As soon as an administrator moves within a Jail he can
see a complete FreeBSD system that can be administered
just like any other FreeBSD system.

FreeBSD Jails are part of the Base System and can signif-
icantly improve system security. Besides locking in a
whole operating system you can also just jail a process or
service. Since a Jail behaves like a complete operating
system, you can install all the software available in Ports.

© 2005-2007 allBSD.de Projekt – written by Axel S. Gruner and Jürgen Dankoweit, translated by Lars Cleary. The BSD Daemon is copyright by Marshall McKusik, valid as of 09.03.2007

FreeBSD Jails - English

http://en.wikipedia.org/wiki/FreeBSD_jail
http://www.bsdforums.org/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/

Server Processes In Jails
Especially daemons like DNS, HTTP, SMTP, POP3,
IMAP, FTP and many other ones had vulnerabilities
which a hacker could use to access gain access to a sys-
tem. Even when diligently patching a system and running
it behind a firewall, a risk remains. To minimize this risk
it's advisable to lock a daemon in a Jail.

Whether you put all daemons in one Jail or each daemon
in its own is up to you. Even after a Jail has been broken
into, your host system remains intact.

Security through Jails
When (and if) an intruder is detected you can never be
sure what has been changed or which backdoor has been
installed. It’s very hard to detect whether only the service
is compromised or also the operating system. A compro-
mised service and system also means reduced availability,
because the whole system will probably have to be re-
built. If a Jail’s system has been compromised you just re-
build the Jail and keep the rest as it is.

Stop the Jail, overwrite the directory of the compromised
Jail with your backup copy of the Jail (no backup – no
mercy) and restart the Jail. This shouldn’t take much
longer than a minute and your service is up and running
again.

Then you can do an offline forensic examination of the
compromised Jail.

As you can see, besides using a good operating system,
using a firewall, an Intrusion Detection System (IDS) and
other security techniques, using a Jail can really help
maintain a high availability of a service.

Your Server as Fort Knox
Firewalls are the first barrier, the operating system the
second, Jails the third and FreeBSD’s Security Flags offer
yet another one.

It’s bad enough when an intruder compromises a system
and renders all that’s in it untrustworthy.

But what if an intruder gains root privileges within the
Jail?

Even then the host system remains secure. But you can
further harden your system using Security Flags and Se-
curelevels. Using Securelevels you can prevent access to

firewall rule modification, kernel module loading, writing
to disk etc.

For more information regarding Security Flags and Se-
curelevels, please refer to the FreeBSD security flyer.

Added value using Jails
1. Multiple virtual servers can be run on one physical ma-
chine. You can actually create a whole demilitarized Zone
(DMZ) using Jails on one physical machine.

2. Server services are often complex and require high
maintenance. Therefore multiple administrators require
access. They are either given root privileges or extensive
sudo configurations need to be setup. Both methods have
their problems. With Jails however, you can give each ad-
ministrator full privileges for his service in his own Jail.
Thus avoiding multiple root accounts that are not moni-
tored and logged.

3. If you require a test-bed for developers or certain ser-
vices you don’t need to build a whole new server. Simply
create a Jail and let the developer do what she wants
without running the risk of compromising the host sys-
tem.

4. In training courses attendees don’t need to share a serv-
er, each attendee can use his own Jail and train in there.
When the course is over no new server needs to be in-
stalled, you only need to overwrite the used Jails with
new ones.

5. If you want to offer your customers root-shells you
don’t need to buy hardware, simply create a Jail for each
customer.

6. An interesting application is to segregate a database
from its user interface by putting the DB and the X-Win-
dows application each in its own Jail.

Jails are obviously a cheap and easy way to more security,
more control, lower costs and more effective use of avail-
able hardware.

Some Technical Details
The implementation of Jails is not restricted to userland,
it's an integral part of the kernel.

A Jail requires approximately 140 MB disk space, but can
of course be more depending on what you put in it. On
the other hand you can also strip it down and delete any-
thing you don't need to run the actual jailed service.

From the system administrator's point of view a Jail is
handled like any other system. You can log into it via
SSH. From the point of view of the host system a Jail is
only directory with a complete minimal FreeBSD installa-
tion on which you have access from the host system.

To work with the Jail you don't have to log into Jail. With
'jexec' you can start and stop daemons and programs, just
look at running processes or which users are logged in.

In the host system's process list every Jail-process is
marked with a 'J'. That way you can immediately see
which processes are running in Jails on the host.

A Jail is subject to certain restrictions which you can in-
fluence via the host system's rc.conf(5) and sysctl(8).
Normally raw sockets (eg. for ping and traceroute) are not
allowed, that can be changed however, as can setting the
Jail's host name from within the Jail.

One of the biggest restrictions with Jails though is that
only one IP address per Jail is allowed, and the address
has to be set with netmask '/32'.

A lot of improvements are in the making as of lately:
ipv6-support, more than 1 IP per jail and resource limits.

The success has led to a project named sysjail for
NetBSD; OpenBSD and MirOS, please see http://sys-
jail.bsd.lv/

© 2005-2007 allBSD.de Projekt – written by Axel S. Gruner and Jürgen Dankoweit, translated by Lars Cleary. The BSD Daemon is copyright by Marshall McKusik, valid as of 09.03.2007

http://sysjail.bsd.lv/
http://sysjail.bsd.lv/

