
Load all modules with kldload:
kldload ndis
kldload if_ndis
kldload wifi1234_sys
The sequence of kldload commands is very important!
Otherwise a kernel panic is the result! As described in the
last section it is better to put everything in the file
/boot/loader.conf:
ndis_load=“YES“
if_ndis_load=“YES“
wifi1234_sys_load=“YES“
Now you may restart the system and configure the the
network card.

Important: Project Evil works on both 32-bit and 64-bit
systems of AMD and Intel. The drivers have to be 32-bit
or 64-bit though.

WPA – Security forWLAN
WPA is a good way to protect your wireless network from
intruders. Compared to WEP it offers much enhanced se-
curity and also authentication.
The tool wpa_supplicant controls the connections and au-
thentification.
Configuration is done in the file '/etc/wpa_supplicant.-
conf'. In following example you will see a client connect
to the access point 'EXPL_AP', with the login 'username'
and the password 'password'.
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
eapol_version=1
ap_scan=1
fast_reauth=1
network={
 ssid="EXPL_AP"
 proto=WPA
 key_mgmt=WPA-EAP
 auth_alg=LEAP
 identity="username"
 password="password"
 priority=1
}

To make sure the WLAN interface is correctly configured
at system startup the following line needs to added to the
central configuration file '/etc/rc.conf':
 ifconfig_ath0=”WPA DHCP”
If you want DHCP, otherwise please add a line like for
wired LAN:
 ifconfig_ath0=”WPA IP-Address Netmask”

Additional security features:
Besides of standard WPA there exist some extensions
which improve the security, but the receiving station has
to support this!

WPA with EAP-TLS: EAP doesn't offer encryption but
offers an interface for other authentication and encryption
methods. In this case it's Transport Layer Security (TLS).
Both sides need a certificate for mutual authentication.

WPA with EAP-TTLS: Here the client doesn't require a
certificate because an SSL-tunnel is created. But for the
server a certificate is mandatory. EAP-TTLS uses the en-
crypted TLS-tunnel to transport the authentication infor-
mation in EAP.

WPA with EAP-PEAP: This protocol was developed as
an alternative to EAP-TTLS. There are two methods, the
one used most often is PEAPv0/EAP-MSCHAP-v2. It's
similar to EAP-TTLS, but the user name is sent in clear
text, while the password is sent over the TLS-tunnel to
the server.

Additional Information
The Atheros driver in FreeBSD offers most features
available in the WLAN standards. Please also refer to the
manual pages for the Atheros driver (ath). Be aware that
vendors often change the chipsets in their cards without
announcement! If you want to make sure you have an
Atheros chipset in your card, please visit this Atheros' ho-
mepage:
http://customerproducts.atheros.com/customerproducts/R
esultsPageBasic.asp

Important manual pages:
wlan(4), wlan_wep(4), wlan_ccmp(4) und wlan_tkip(4)

wpa_supplicant(8) and wpa_supplicant.conf(5), ath(4)

List of natively supported WLAN cards: wlan(4)

http://www.freebsd.org/doc/en/books/handbook/network-
wireless.html

FreeBSD
Wireless-LAN

The network standard Wireless LAN (WLAN) has esta-
blished itself in the past few years as a viable alternative
to wired networking. FreeBSD supports WLAN with nati-
ve drivers and with Windows drivers in the connection
with “Project Evil”.

WLANs are organized in two ways:
infrastructure mode: A master, called Access Point (AP),
and multiple clients form a network where all the commu-
nication goes through the access point. This is also known
as Basic Service Set (BSS).
adhoc mode: There's no master and all stations communi-
cate directly with each other. This is known as Indepen-
dent Basic Service Set (IBSS).
Tracing of radio links and connections of unauthorized
persons is a great risk. Mainly two mechanisms are crea-
ted to protect this:

WEP mode: simple but ineffective encryption mode
which is described in the IEEE802.11 standard.

WPA mode (Wifi protected access): much better encrypti-
on mode with authentification. This mode is described in
the IEEE802.11i standard.
To improve support for multimedia applications WME
and WMM were developed, as were protocols to improve
bandwidth usage with Quality of Service (QoS) functio-
nality.

© 2005-2007 allBSD.de project –The FreeBSD Logo is copyright FreeBSD foundation. Written by Jürgen Dankoweit, translated by Michelle Wechter and Lars Cleary, valid as of 09.03.2007

FreeBSD WLan - English

http://customerproducts.atheros.com/customerproducts/ResultsPageBasic.asp
http://customerproducts.atheros.com/customerproducts/ResultsPageBasic.asp
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-wireless.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-wireless.html
http://www.freebsd.org/cgi/man.cgi?query=wlan&apropos=0&sektion=0&manpath=FreeBSD+6.1-RELEASE&format=html
http://www.freebsd.org/cgi/man.cgi?query=ath&apropos=0&sektion=4&manpath=FreeBSD+6.1-RELEASE&format=html
http://www.freebsd.org/cgi/man.cgi?query=wpa_supplicant.conf&sektion=5&apropos=0&manpath=FreeBSD+6.1-RELEASE
http://www.freebsd.org/cgi/man.cgi?query=wpa_supplicant&sektion=8&apropos=0&manpath=FreeBSD+6.1-RELEASE
http://www.freebsd.org/cgi/man.cgi?query=wlan_tkip&sektion=4&apropos=0&manpath=FreeBSD+6.1-RELEASE
http://www.freebsd.org/cgi/man.cgi?query=wlan_ccmp&sektion=4&apropos=0&manpath=FreeBSD+6.1-RELEASE
http://www.freebsd.org/cgi/man.cgi?query=wlan_wep&apropos=0&sektion=0&manpath=FreeBSD+6.1-RELEASE&format=html
http://www.freebsd.org/cgi/man.cgi?query=wlan&apropos=0&sektion=0&manpath=FreeBSD+6.1-RELEASE&format=html

FreeBSD 6.0 supports either WLAN networks based on
the IEEE802.11 standard or the WPA mode, the
WME/WMM and QoS as described in IEEE802.11i. The
last one is not supported by all drivers. The operating sys-
tem works either as access point or as a bridge to the in-
ternet.

Native WLAN support in FreeBSD
FreeBSD offers native driver support for many WLAN
chipsets. Beside the direct implementation in the kernel
there is an easier way to load a kernel module with kld-
load. The following shows an example for the implemen-
tation of a device driver for an WLAN card with Atheros
chipset:
cd /usr/src/sys/<platform>/conf
cp GENERIC WLANKERNEL
Now edit the file 'WLANKERNEL' and add following li-
nes:
device ath
device ath_hal
device ath_rate_sample
device wlan
device wlan_wep
device wlan_ccmp
device wlan_tkip
device wlan_acl
device wlan_xauth
Now save the configuration, compile and install it:
cd /usr/src
make buildkernel KERNCONF=WLANKERNEL
make installkernel KERNCONF=WLANKERNEL
You may also use a different name than 'WLANKER-
NEL'. Make sure there are no error messages during com-
pilation and installation. Do not forget to backup the old
kernel before creating a new one!
Loading of kernel modules is much easier. Below you
find an example with the same card as above:
Put in the file /boot/loader.conf:
if_ath_load="YES"
wlan_wep_load="YES"
wlan_ccmp_load="YES"
wlan_tkip_load="YES"
All additional modules that are needed will be loaded au-
tomatically when required.

„Project Evil“
If no native FreeBSD drivers are available maybe “Pro-
ject Evil” can help. One of the problems plaguing the free
software community is the availability of device drivers.
As long as an operating system doesn't have sufficient
market penetration it makes no economic sense to deve-
lop drivers for it.
Many vendors don't even offer sufficient documentation
to allow writing drivers. In the case of WLAN-cards this
can be quite a problem because it's very hard to predict
which chipset will be used in a future card. Many vendors
change the chipsets without changing the card's name or
version.

That's why the FreeBSD community has started “Project
Evil”. This is an integration of part of the Windows-API
which allows using Windows drivers for network cards
(not only WLan cards).

How does „Project Evil“ work?
It offers basic functions used by Windows network device
drivers. These functions are translated internally to the
FreeBSD driver model. The network driver thinks it's in a
Windows environment.

FreeBSD though sees it as a FreeBSD kernel module. In
Windows a WLAN driver consists of three components:
the driver itself (often with the filename extension '.sys'),
an information file (often with the filename extension
'.inf') and a file with a copy of the card's firmware.

Traditionally the firmware of a network card is burned
into the ROM of the card. Later the need for being able to
update was recognized and the firmware was stored in a
Flash-ROM.
In modern cheap cards no Flash-ROM is used anymore
and the firmware is stored in RAM instead. That means
that the driver first has to load it before the card can use
it. Some drivers have separate firmware for the Ethernet
controller an WLAN parts. In most cases the firmware fi-
les have the filename extension '.bin'.

Creation of kernel modules
A copy of the Windows driver is needed. It can be found
on the driver CD of the manufacturer or on its internet
site. Now copy all files with the extension .sys, .inf and
.bin in one directory.
In this tutorial we will use the card WIFI1234 as an ex-
ample, so replace the driver names with the ones of your
card's. Following files were used here:

wifi1234.bin: firmware of the card
wifi1234funk.bin: firmware of the transmitter
WIFI1234.INF: driver information
wifi1234.sys: the driver itself

Procedure
As of FreeBSD 5.4 no kernel source code is required any-
more for Project Evil. The ndis- and if_ndis-modules
should already be installed. You just still need to generate
a module containing the driver and firmware of your spe-
cific card. This is done with the program ndisgen.

ndisgen

The program will ask for the directory containing your
driver and firmware. Please be aware to give the full path
to the directory you created. As a result you should get a
single module (.ko). In our example we would get the
module 'wifi1234_sys.ko'. Copy this file to '/boot/kernel'.

cp wifi1234_sys.ko /boot/kernel/

© 2005-2007 allBSD.de project –The FreeBSD Logo is copyright FreeBSD foundation. Written by Jürgen Dankoweit, translated by Michelle Wechter and Lars Cleary, valid as of 09.03.2007

