
WLAN Devices supported native
3Com: 3Com 3CRPAG175
AZTech: Aztech WL830PC
BayStack: BayStack 650, 660
Cisco: Aironet 802.11b wireless adapters
D-Link: DWL-A520, DWL-A650, DWL-AB650, DWL-
AG520, DWL-AG650, DWL-G520B, DWL-G650B
Elecom: LD-WL54, LD-WL54AG
Farallon: SkyLINE
Fujitsu: E5454, E5454, FMV-JW481
Hewlett-Packard: P NC4000
I/O Data: WN-A54, WN-AB, WN-AG
Icom: SL-200
Linksys: WMP55AG, WPC51AB, WPC55AG
Melco: WLI-PCM
NEC: PA-WL/54AG
NEL: SSMagic
Netgear: WAB501, WAG311, WAG511, WG311,
WG311T, WG511T
NetWave: AirSurfer, AirSurfer Plus, AirSurfer Pro
Nokia: C020 WLAN
Orinoco: 8470WD, 8480
Proxim: Skyline 4030, Skyline 4032
Raytheon: Raylink 2.4GHz wireless adapters
Samsung: SWL-5200N
SMC: SMC2735W
Sony: PCWA-C300S, PCWA-C500, PCWA-C700
Xircom: CreditCard Netwave
Lucent Technologies: WaveLAN/IEEE 802.11b wireless
network adapters and workalikes using the Lucent Her-
mes, Intersil PRISM-II, Intersil PRISM-2.5, Intersil
Prism-3, und Symbol Spectrum24 Chips

NCR / AT&T / Lucent Technologies: WaveLan T1-
speed ISA radio LAN cards

Additional Information
The best support for WLAN is provided by the Atheros
driver for the AR5210, AR5211 and AR5212 chip sets. If
you need more information you may consult the Atheros
manual page "ath" on the FreeBSD homepage
www.FreeBSD.org. Please also keep in mind that some
companies change the chip sets of their devices without
notice.

To make sure there's an Atheros chip set in the WLAN
adapter you want to buy, we recommend you consult the
Atheros homepage before where you can find all compa-
nies using Atheros products:

http://customerproducts.atheros.com/customerproducts/R
esultsPageBasic.asp

Important links

FreeBSD-Homepage: www.FreeBSD.org
BSD-Forum (English): www.BSDForums.org

Notice:
Please make sure you protect your WLAN adequately! In
the FreeBSD Handbook there's a whole chapter dedicated
to this, called Wireless Networking.

If you see something not listed here or have any suggestions,
please contact Daniel.Seuffert@allBSD.de, we will update this
flyer. Thanks for helping us!

FreeBSD
WLan and Project Evil

© 2005-2006 allBSD.de Projekt –The BSD Deamon is copyright Marshall McKusick. Written by Jürgen Dankoweit, translated by Lars Cleary, valid as of 24.10.2006.

FreeBSD WLan - English

Project Evil: Windows-Drivers for FreeBSD
This howto is based on the following arcticle by David Chrisnall.
Thank you David!

www.pingwales.co.uk/tutorials/project-evil.html

Introducing Evil

One of the problems plaguing the Free Software commu-
nity is the availability of device drivers. Unless an operat-
ing system has a significant market share, it does not
make economic sense for a manufacturer to write device
drivers for that system. Many manufacturers won't even
provide documentation allowing open source drivers to be
written, claiming that it would require disclosure of valu-
able intellectual property.
In the case of WiFi cards, this can be a problem. It is very
difficult to tell in advance which chipset is used in a given
card - some manufacturers change the hardware com-
pletely without changing the model number - and so find-
ing a WiFi card compatible with your favourite OS can be
difficult.
OpenBSD has a strong ideological attitude in this respect.
If a manufacturer is not willing to release documentation,
then they will not include closed-source drivers. This ar-
gument makes sense from a security point of view - if the
drivers are closed then you can't audit them and so they
may end up compromising the base system.
FreeBSD is more pragmatic. They include Project Evil, a
partial implementation of the Windows driver API, which
allows Windows drivers to be used for network cards.
While not quite as useful as a native driver, they are a sig-
nificant improvement over no driver at all.

How Does It Work?

Project Evil provides a set of basic functions commonly
used by Windows network drivers. These functions are
then translated internally to the FreeBSD driver model.
To the driver, it appears that it is running in a normal
Windows environment. To the OS, it appears that a native
FreeBSD kernel module containing the driver is present.
On Windows, a WiFi driver comes in three components.
The driver itself usually has the extension .sys. There is
also a .inf file which contains information about the driv-
er, such as the device ID of the hardware. Finally there is
a copy of the driver firmware.
Traditionally, the firmware - software embedded in the
device - for a network interface would be burned into
ROM and shipped with the card. Then it was realised that

the ability to update the firmware was desirable and so it
was put in Flash, or similar. In modern, low budget, cards,
the Flash is left off, and the firmware is stored in RAM.
This means that the driver must load it before the card can
be used.
To make matters more complicated, some drivers have
separate firmware for the ethernet controller and radio
portions of the firmware. Firmware files usually have the
.bin extension.

Building the Kernel Modules

You will need a copy of the Windows driver. This will
probably be on a CD included with your network card, or
available from the manufacturer's web site. You should
copy everything with a .sys, .inf, or .bin extension to
/sys/modules/if_ndis.
I will use the file names of my driver for the rest of this
tutorial, but you should substitute your own. The files
supplied for my card are:
Fw1130.bin Network interface firmware.
FwRad16.bin Radio firmware.
TNET1130.INF Driver information file.
tnet1130.sys Driver binary.
The way of generating Project Evil kernel modules
changed between FreeBSD 5.3 and FreeBSD 5.4, and un-
fortunately the documentation shipped with 5.4 still re-
flects the 5.3 method which no longer works. We will ex-
plain the new way only. It might be worth upgrading to
-STABLE before you start, as work on Project Evil is
constantly in progress.

The New Way

The new way doesn't require the kernel sources installed.
The ndis and if_ndis kernel modules should already be in-
stalled. You will need to create one module for your card,
which will contain the driver and the firmware. This is
handled by an undocumented wizard called ndisgen.

ndisgen

This will ask you for the location of your driver and
firmware files. Note that they are case-sensitive and re-
quire full paths. At the end, it will create a single .ko file.
In my case, this was tnet1130_sys.ko. You need to move
this module to a location where it can be found by kld-
load, and then load it.

cp tnet1130_sys.ko /boot/kernel/
kldload ndis

kldload if_ndis
kldload tnet1130_sys

Note the order of the kldload statements. It is very impor-
tant that they be performed in this order. Attempting to
load the network card driver before the ndis stub driver
can result in a kernel panic.
As with the old way, you load the driver at boot by adding
it to /boot/loader.conf. You will need to add a line for
each module of the three modules, so you should end up
with something that looks like this:
ndis_load="YES"
if_ndis_load="YES"
tnet1130_sys_load="YES"

You can now reboot and have your network card available
at boot time. As before, use /stand/sysinstall to set up the
interface.

Notice:
„Project Evil“ works with 32- and 64-bit processors from
AMD and Intel. You need to have the 32- or 64-bit drivers
for Windows respectively!

Important Information
Starting with FreeBSD 6.0 you only need ndisgen!

Compiling Kernel (i386)
You can also compile your ndis driver into your kernel:
cd /usr/src/sys/i386/conf
cp GENERIC NDISKERNEL
You need to set the following options:
options NDISAPI
device ndis
device wlan # only if WLAN is used!
Save your configuration
cd /usr/src
make buildkernel KERNCONF=NDISKERNEL
make installkernel KERNCONF=NDISKERNEL
You may choose any name for your NDIS-capable kernel,
NDISKERNEL is just an example. Pay attention to any
error messages while compiling and installing. Please
don't forget to backup your old kernel and modules before
trying to compile the new kernel (copy to
/root/kernels/NDISKERNEL or elsewhere)!

© 2005-2006 allBSD.de Projekt –The BSD Deamon is copyright Marshall McKusick. Written by Jürgen Dankoweit, translated by Lars Cleary, valid as of 24.10.2006.

